Announcements

- W4 due right now
- P4 out, due Friday
- Tracking of top 20 teams begins tonight

Survey

- More comprehensive discussion on Wednesday
- Immediate actions points:
 - Graduate / Undergraduate assessment
 - Slides++
 - Two review sessions: sent request to campus
 - Camera-man tracks all activity

Today

- Naïve Bayes
 - Inference
 - Parameter estimation
 - Generalization and overfitting
 - Smoothing
- General classification concepts
 - Confidences
 - Precision-Recall

Example Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
 - Spam detection (input: document, classes: spam / ham)
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - ... many more
- Classification is an important commercial technology!

Bayes Nets for Classification

- One method of classification:
 - Use a probabilistic model!
 - Features are observed random variables \(F_i \)
 - \(Y \) is the query variable
 - Use probabilistic inference to compute most likely \(Y \)
 \[
 y = \arg \max_y P(y | f_1 \ldots f_n) .
 \]
- You already know how to do this inference
A general Naïve Bayes model:

\[P(Y, F_1 \ldots F_n) = \prod_{Y} P(F_i | Y) \prod_{Y} P(Y) \]

- We only specify how each feature depends on the class
- Total number of parameters is linear in \(n \)

Inference for Naïve Bayes

- Goal: compute posterior over causes
 - Step 1: get joint probability of causes and evidence
 \[P(Y, f_1 \ldots f_n) = \frac{P(Y)}{P(f_1 \ldots f_n)} \]
 \[P(f_1 \ldots f_n) \]
 - Step 2: get probability of evidence
 - Step 3: renormalize

What do we need in order to use Naïve Bayes?

- Inference (you know this part)
 - Start with a bunch of conditionals, \(P(Y) \) and the \(P(F_i | Y) \) tables
 - Use standard inference to compute \(P(Y|F_1 \ldots F_n) \)
 - Nothing new here
- Estimates of local conditional probability tables
 - \(P(Y) \), the prior over labels
 - \(P(F_i | Y) \) for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by \(\theta \)
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data: we’ll look at this now

Naïve Bayes for Digits

- Simple version:
 - One feature \(F_i \) for each grid position \(<i,j>\)
 - Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.
 \(\text{1} \rightarrow (F_{1,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 0 \ F_{3,3} = 1 \ F_{0,4} = 0 \ldots F_{15,15} = 0) \)
 - Here: lots of features, each is binary valued
- Naïve Bayes model:
 \[P(Y|F_{0,0} \ldots F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j} | Y) \]
- What do we need to learn?

Examples: CPTs
Parameter Estimation

- Estimating distribution of random variables like \(X \) or \(X | Y \)
 - **Empirically:** use training data
 - For each outcome \(x \), look at the empirical rate of that value:
 \[
 \hat{p}_n(x) = \frac{\text{count}(x)}{\text{total samples}}
 \]
 - This is the estimate that maximizes the likelihood of the data
 - **Elicitation:** ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

Naïve Bayes for Text

- **Bag-of-Words Naïve Bayes:**
 - Predict unknown class label (spam vs. ham)
 - Assume evidence features (e.g. the words) are independent
 - Warning: subtly different assumptions than before!

- **Generative model**
 \[
 P(Y, W_1, \ldots, W_n) = P(Y) \prod_i P(W_i \mid Y)
 \]
- **Tied distributions and bag-of-words**
 - Usually, each variable gets its own conditional probability distribution \(P(F \mid Y) \)
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs \(P(W \mid C) \)
 - Why make this assumption?

Example: Spam Filtering

- **Model:**
 \[
 P(Y, W_1, \ldots, W_n) = P(Y) \prod_i P(W_i \mid Y)
 \]

- **What are the parameters?**

- **Naïve Bayes for Text**
 - Data:
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets

Spam Example

| Word | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|------|----------|----------|----------|---------|
| (prior) | 0.33333 | 0.66666 | -1.1 | -0.4 |

\[
\log \frac{P(\text{spam} \mid w) \cdot \text{spam} \cdot \text{ham}}{P(\text{ham} \mid w) \cdot \text{ham} \cdot \text{spam}} = \text{spam score}
\]

A Spam Filter

- **Naïve Bayes spam filter**
 - **Data:**
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - **Elicitation:** ask a human!
 - Usually need domain experts, and sophisticated ways of eliciting probabilities (e.g. betting games)
 - Trouble calibrating

Spam Example

- **Model:**
 \[
 P(Y, W_1, \ldots, W_n) = P(Y) \prod_i P(W_i \mid Y)
 \]
- **What are the parameters?**

- **Naïve Bayes for Text**
 - Data:
 - Collection of emails, labeled spam or ham
 - Note: someone has to hand label all this data!
 - Split into training, held-out, test sets

Spam Example

| Word | P(w|spam) | P(w|ham) | Tot Spam | Tot Ham |
|------|----------|----------|----------|---------|
| (prior) | 0.33333 | 0.66666 | -1.1 | -0.4 |

\[
\log \frac{P(\text{spam} \mid w) \cdot \text{spam} \cdot \text{ham}}{P(\text{ham} \mid w) \cdot \text{ham} \cdot \text{spam}} = \text{spam score}
\]
Example: Overfitting

Posteriors determined by relative probabilities (odds ratios):

- $P(W|\text{ham})$ vs $P(W|\text{spam})$

- south-west : inf
- nation : inf
- morally : inf
- nicely : inf
- extent : inf
- seriously : inf
- signature : inf

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn’t mean we won’t test it at test time
 - Unlikely that every occurrence of “minute” is 100% spam
 - What about all the words that don’t occur in the training set at all?
 - In general, we can’t go around giving unseen events zero probability

- As an extreme case, imagine using the entire email as the only feature
 - Would get the training data perfect (if deterministic labeling)
 - Just making the bag-of-words assumption gives us some generalization, but isn’t enough

- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
 - If I flip a coin once, and it’s heads, what’s the estimate for $P(\text{heads})$?
 - What if I flip 10 times with 8 heads?
 - What if I flip 10M times with 8M heads?

- Basic idea:
 - We have some prior expectation about parameters (here, the probability of heads)
 - Given little evidence, we should skew towards our prior
 - Given a lot of evidence, we should listen to the data

Estimation: Laplace Smoothing

- Laplace’s estimate:
 - Pretend you saw every outcome once more than you actually did
 - $P_{LAP}(X) = \frac{c(X) + 1}{N + |X|}$, $P_{ML}(X) =$
 - Can derive this as a MAP estimate with Dirichlet priors (see cs281a)
Estimation: Laplace Smoothing

- Laplace’ s estimate (extended):
 - Pretend you saw every outcome \(k \) extra times

 \[
 P_{\text{LAP}}(X) = \frac{c(x) + k}{N + k|X|}
 \]
 - What’ s Laplace with \(k = 0 \)?
 - \(k \) is the strength of the prior
 - Laplace for conditionals:
 - Smooth each condition

 \[
 P_{\text{LAP}}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}
 \]

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for \(P(X|Y) \):
 - When \(|X| \) is very large
 - When \(|Y| \) is very large
- Another option: linear interpolation
 - Also get \(P(X) \) from the data
 - Make sure the estimate of \(P(X|Y) \) isn’ t too different from \(P(X) \)

 \[
 P_{\text{LIN}}(x|y) = \alpha P(x|y) + (1.0 - \alpha) P(x)
 \]
 - What if \(\alpha = 0 \)?

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:
 - \(\frac{P(W \mid \text{ham})}{P(W \mid \text{spam})} \)
 - \(\frac{P(W \mid \text{spam})}{P(W \mid \text{ham})} \)

<table>
<thead>
<tr>
<th></th>
<th>helvetica</th>
<th>verdana</th>
<th>seena</th>
<th>group</th>
<th>areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>helvetica</td>
<td>11.4</td>
<td>28.6</td>
<td>10.8</td>
<td>10.2</td>
<td>8.3</td>
</tr>
<tr>
<td>verdana</td>
<td>28.6</td>
<td>10.8</td>
<td>10.2</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>seena</td>
<td>10.8</td>
<td>28.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>group</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>areas</td>
<td>8.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do these make more sense?

Tuning on Held-Out Data

- Now we’ ve got two kinds of unknowns
 - Parameters: the probabilities \(P(Y|X), P(Y) \)
 - Hyperparameters, like the amount of smoothing to do: \(k, \alpha \)
- Where to learn?
 - Learn parameters from training data
 - Must tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Errors, and What to Do

- Examples of errors
 - Dear GlobalSCAPE Customer,
 GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just $99.99! - the regular list price is $499! The most common question we’ ve received about this offer is – Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .
 - Errors, and What to Do About Errors?
 - Need more features – words aren’ t enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
 - Can add these information sources as new variables in the NB model
 - NB models do best when the features homogeneous
 - Next class we’ ll talk about classifiers which let you easily add arbitrary features more easily
Summary Naïve Bayes Classifier

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them

Baselines

- First step: get a baseline
 - Baselines are very simple “straw man” procedures
 - Help determine how hard the task is
 - Help know what a “good” accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label
 - Represents how sure the classifier is of the classification
 - Any probabilistic model will have confidences
 - No guarantee confidence is correct
- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What’s the value of calibration?

Precision vs. Recall

- Let’s say we want to classify web pages as homepages or not
 - In a test set of 1K pages, there are 3 homepages
 - Our classifier says they are all non-homepages
 - 99.7 accuracy!
 - Need new measures for rare positive events
- Precision: fraction of guessed positives which were actually positive
- Recall: fraction of actual positives which were guessed as positive
- Say we guess 5 homepages, of which 2 were actually homepages
 - Precision: 2 correct / 5 guessed = 0.4
 - Recall: 2 correct / 3 true = 0.67
- Which is more important in customer support email automation?
- Which is more important in airport face recognition?

Precision/recall tradeoff

- Often, you can trade off precision and recall
- Only works well with weakly calibrated classifiers
- To summarize the tradeoff:
 - Break-even point: precision value when \(p = r \)
 - F-measure: harmonic mean of \(p \) and \(r \):
 \[
 F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}
 \]