Announcements

- On-going: contest (optional and FUN!)
- Remaining lectures:
 - Today: Machine Learning: Nearest Neighbors, Kernels
 - Wednesday: Machine Learning for Computer Vision
 - Next Monday: Case Studies in Speech/Language and Robotics
 - Next Wednesday:
 - Course Wrap-Up
 - Pointers to courses and Books for those who want to learn more AI
 - Contest!
 - RRR Week Monday and Wednesday: Review Sessions

Today

- Nearest neighbors
- Kernels
- Applications:
 - Extension to ranking / web-search
 - Pacman apprenticeship

Classification overview

- Naive Bayes:
 - Builds a model/training data
 - Gives prediction probabilities
 - Strong assumptions about feature independence
 - One pass through data (counting)
- Perceptron:
 - Makes less assumptions about data
 - Mistake-driven learning
 - Multiple passes through data (prediction)
 - Often more accurate
- MIRA:
 - Like perceptron, but adaptive scaling of size of update
- SVM:
 - Properties similar to perceptron
 - Convex optimization formulation
- Nearest-Neighbor:
 - Non-parametric: more expressive with more training data
- Kernels
 - Efficient way to make linear learning architectures into nonlinear ones

Case-Based Reasoning

- Similarity for classification
 - Case-based reasoning
 - Predict an instance’s label using similar instances
- Nearest-neighbor classification
 - 1-NN: copy the label of the most similar data point
 - K-NN: let the k nearest neighbors vote (have to devise a weighting scheme)
 - Key issue: how to define similarity
 - Trade-off:
 - Small k gives relevant neighbors
 - Large k gives smoother functions
 - Sound familiar?

[Demo]
Parametric / Non-parametric

- **Parametric models:**
 - Fixed set of parameters
 - More data means better settings

- **Non-parametric models:**
 - Complexity of the classifier increases with data
 - Better in the limit, often worse in the non-limit

(K)NN is **non-parametric**

<table>
<thead>
<tr>
<th>2 Examples</th>
<th>10 Examples</th>
<th>100 Examples</th>
<th>100000 Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nearest-Neighbor Classification

- Nearest neighbor for digits:
 - Take new image
 - Compare to all training images
 - Assign based on closest example

- Encoding: image is vector of intensities:
 \[\mathbf{1} = (0.0, 0.0, 0.3, 0.6, 0.7, 0.1, \ldots, 0.0) \]

- What’s the similarity function?
 - Dot product of two images vectors:
 \[\text{sim}(\mathbf{x}, \mathbf{x'}) = \mathbf{x} \cdot \mathbf{x'} = \sum_i x_i x'_i \]
 - Usually normalize vectors so \(||\mathbf{x}|| = 1 \)
 - \(\min = 0 \), \(\max = 1 \)

Basic Similarity

- Many similarities based on feature dot products:
 \[\text{sim}(\mathbf{x}, \mathbf{x'}) = f(x) \cdot f(x') = \sum_i f_i(x) f_i(x') \]

- If features are just the pixels:
 \[\text{sim}(\mathbf{x}, \mathbf{x'}) = \mathbf{x} \cdot \mathbf{x'} = \sum_i x_i x'_i \]

- Note: not all similarities are of this form

Invariant Metrics

- Better distances use knowledge about vision
- Invariant metrics:
 - Similarities are invariant under certain transformations
 - Rotation, scaling, translation, stroke-thickness…
 - E.g.:
 \[\text{E.g.:} \]
 \[16 \times 16 = 256 \text{ pixels; a point in 256-dim space} \]
 \[\text{Small similarity in } \mathbb{R}^{256} \text{ (why?)} \]
 \[\text{Variety of invariant metrics in literature} \]
 \[\text{Viable alternative: transform training examples such that training set includes all variations} \]

Rotation Invariant Metrics

- Each example is now a curve in \(\mathbb{R}^{256} \)
- Rotation invariant similarity:
 \[s'(r) = \max_s ||r|| \]
 - E.g. highest similarity between images’ rotation lines

Classification overview

- Naive Bayes
- Perceptron, MIRA
- SVM
- Nearest-Neighbor
- Kernels
A Tale of Two Approaches …

- Nearest neighbor-like approaches
 - Can use fancy similarity functions
 - Don’t actually get to do explicit learning

- Perceptron-like approaches
 - Explicit training to reduce empirical error
 - Can’t use fancy similarity, only linear
 - Or can they? Let’s find out!

Perceptron Weights

- What is the final value of a weight \(w \), of a perceptron?
 - Can it be any real vector?
 - No! It’s built by adding up inputs.

\[
\begin{align*}
\omega_y &= 0 + f(x_1) - f(x_2) + \ldots \\
 &= \sum_{i} \alpha_{i,y} f(x_i)
\end{align*}
\]

- Can reconstruct weight vectors (the primal representation) from update counts (the dual representation)

\[
\alpha_y = \langle \alpha_{1,y}, \alpha_{2,y}, \ldots, \alpha_{n,y} \rangle
\]

Dual Perceptron

- How to classify a new example \(x \)?

\[
\text{score}(y, x) = \omega_y \cdot f(x) = \sum_{i} \alpha_{i,y} K(x_i, x)
\]

- If someone tells us the value of \(K \) for each pair of examples, never need to build the weight vectors!

Dual Perceptron

- Start with zero counts (alpha)
- Pick up training instances one by one
- Try to classify \(x_n \)
 - If correct, no change!
 - If wrong: lower count of wrong class (for this instance), raise score of right class (for this instance)

\[
\begin{align*}
\alpha_{y,n} &= \alpha_{y,n} - 1 \quad \Rightarrow \quad \omega_y = \omega_y - f(x_n) \\
\alpha_{y^*,n} &= \alpha_{y^*,n} + 1 \quad \Rightarrow \quad \omega_{y^*} = \omega_{y^*} + f(x_n)
\end{align*}
\]

Kernelized Perceptron

- If we had a black box (kernel) which told us the dot product of two examples \(x \) and \(y \):
 - Could work entirely with the dual representation
 - No need to ever take dot products (“kernel trick”)

\[
\text{score}(y, x) = \omega_y \cdot f(x) = \sum_{i} \alpha_{i,y} K(x_i, x)
\]

- Like nearest neighbor – work with black-box similarities
- Downside: slow if many examples get nonzero alpha

Kernelized MIRA

- Our formula for \(\tau \) (see last lecture)

\[
\begin{align*}
\alpha_{y,n} &= \alpha_{y,n} - \tau \\
\alpha_{y^*,n} &= \alpha_{y^*,n} + \tau \\
\omega_y &= \omega_y - \tau f(x) \\
\omega_{y^*} &= \omega_{y^*} + \tau f(x)
\end{align*}
\]

\[
\tau^* = \min \left(\sum_{i} \alpha_{i,y} K(x_i, x) - \sum_{i} \alpha_{i,y^*} K(x_i, x) + 1, 0 \right)_{\text{prime}}
\]

\[
\tau^* = \min \left(\sum_{i} \alpha_{i,y} K(x_i, x) - \sum_{i} \alpha_{i,y^*} K(x_i, x) + 1, 0 \right)_{\text{dual}}
\]
Kernels: Who Cares?

- So far: a very strange way of doing a very simple calculation
- "Kernel trick": we can substitute any* similarity function in place of the dot product
- Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain technical requirements, lots of proofs break. E.g. convergence, mistake bounds. In practice, illegal kernels sometimes work (but not always).

Non-Linear Separators

- Data that is linearly separable (with some noise) works out great:
- But what are we going to do if the dataset is just too hard?

Some Kernels

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back
- Linear kernel: \(K(x, x') = x \cdot x' = \sum_i x_i x'_i \)
- Quadratic kernel: \(K(x, x') = (x \cdot x' + 1)^2 \)

For \(\phi \in \mathbb{R}^3 \):

\[\phi(x) = [x_1, x_2, x_3, \sqrt{dx_1^{-1} x_2} \sqrt{dx_1^{-1} x_3} \ldots \sqrt{dx_1} \sqrt{dx_2} \sqrt{dx_3}] \]

For \(\phi \in \mathbb{R}^d \) the \(d \)-order polynomial kernel’s implicit feature space is \(\binom{d+1}{2} \) dimensional.

By contrast, computing the kernel directly only requires \(O(d) \) time.
Some Kernels (3)

- Kernels implicitly map original vectors to higher dimensional spaces, take the dot product there, and hand the result back.
- Radial Basis Function (or Gaussian) Kernel: infinite dimensional representation
 \[K(x, x') = \exp\left(-\frac{||x - x'||^2}{2\sigma^2}\right) \]
- Discrete kernels: e.g. string kernels
 - Features: all possible strings up to some length
 - To compute kernel: don’t need to enumerate all substrings for each word, but only need to find strings appearing in both \(x \) and \(x' \).

Why Kernels?

- Can’t you just add these features on your own (e.g. add all pairs of features instead of using the quadratic kernel)?
 - Yes, in principle, just compute them
 - No need to modify any algorithms
 - But, number of features can get large (or infinite)
- Kernels let us compute with these features implicitly
 - Example: implicit dot product in polynomial, Gaussian and string kernel takes much less space and time per dot product
 - Of course, there’s the cost for using the pure dual algorithms: you need to compute the similarity to every training datum.

Recap: Classification

- Classification systems:
 - Supervised learning
 - Make a prediction given evidence
 - We’ve seen several methods for this
 - Useful when you have labeled data

Extension: Web Search

- Information retrieval:
 - Given information needs, produce information
 - Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

Feature-Based Ranking

- \(x = \text{"Apple Computers"} \)
 - \(f(x) = [0.3 \ 5 \ 0 \ 0 \ldots] \)
 - \(f(x) = [0.8 \ 4 \ 2 \ 1 \ldots] \)

Perceptron for Ranking

- Inputs \(x \)
- Candidates \(y \)
- Many feature vectors: \(f(x, y) \)
- One weight vector: \(w \)
 - Prediction:
 \[y = \text{arg max}_y \ w \cdot f(x, y) \]
 - Update (if wrong):
 \[w = w + f(x, y^*) - f(x, y) \]

Pacman Apprenticeship!

- Examples are states s
- Candidates are pairs (s,a)
- "Correct" actions: those taken by expert
- Features defined over (s,a) pairs: $f(s,a)$
- Score of a q-state (s,a) given by:
 $$ w \cdot f(s,a) $$
- How is this VERY different from reinforcement learning?