CS 188: Artificial Intelligence
Fall 2009

Lecture 3: A* Search
9/3/2009

Pieter Abbeel – UC Berkeley
Many slides from Dan Klein

Announcements

- Assignments:
 - Project 0 (Python tutorial): due Friday 1/28 at 4:59pm
 - Project 1 (Search): due Friday 2/4 at 4:59pm
 - Watch for office hour specifics — GSI project Czar!
 - Still looking for project partners? — Come to front after lecture.
 - Try pair programming, not divide-and-conquer
 - Account forms available up front during break and after lecture
- Lecture Videos: will be linked from lecture schedule
- Sections start tomorrow
 - Have fun solving exercises! Solutions will be posted online on Friday after last section.
 - After 2 weeks of section we will evaluate potential overcrowdedness issues and find a solution

Today

- Time and space complexity of DFS and BFS
- Iterative deepening --- “best of both worlds”
- Uniform cost search
- Greedy search
- A* search
 - Heuristic design
 - Admissibility, Consistency
- Tree search → Graph search

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

General Tree Search

Function TREE-SEARCH (problem, strategy) returns a solution, or failure:
initiate the search tree using the initial state of problem
lookup:
 if there are no candidates for expansion then return failure
 choose a list node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree end

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy
- Main question: which fringe nodes to explore?
Example Search Tree

- **Search:**
 - Expand out possible plans
 - Maintain a fringe of unexpanded plans
 - Try to expand as few tree nodes as possible

Search Algorithm Properties

- **Complete?** Guaranteed to find a solution if one exists?
- **Optimal?** Guaranteed to find the least cost path?
- **Time complexity?**
- **Space complexity?**

Variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>Number of states in the problem</td>
</tr>
<tr>
<td>(b)</td>
<td>The average branching factor (B) (the average number of successors)</td>
</tr>
<tr>
<td>(C^*)</td>
<td>Cost of least cost solution</td>
</tr>
<tr>
<td>(s)</td>
<td>Depth of the shallowest solution</td>
</tr>
<tr>
<td>(m)</td>
<td>Max depth of the search tree</td>
</tr>
</tbody>
</table>

DFS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>Infinite</td>
<td>Infinite</td>
</tr>
</tbody>
</table>

- Infinite paths make DFS incomplete…
- How can we fix this?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS w/ Path Checking</td>
<td>Y</td>
<td>N</td>
<td>(O(b^{s+1}))</td>
<td>(O(b^{s+1}))</td>
</tr>
</tbody>
</table>

BFS

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>Y</td>
<td>(O(b^s))</td>
<td>(O(b^s))</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>(O(b^{s+1}))</td>
<td>(O(b^{s+1}))</td>
</tr>
</tbody>
</table>

- When is BFS optimal?

Comparisons

- When will BFS outperform DFS?
- When will DFS outperform BFS?
Iterative Deepening

Iterative deepening uses DFS as a subroutine:
1. Do a DFS which only searches for paths of length 1 or less.
2. If "1" failed, do a DFS which only searches paths of length 2 or less.
3. If "2" failed, do a DFS which only searches paths of length 3 or less.
...and so on.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(b^m)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m-1)</td>
<td>O(b^m-1)</td>
</tr>
<tr>
<td>DFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m-1)</td>
<td>O(b^m-1)</td>
</tr>
</tbody>
</table>

Costs on Actions

Notice that BFS finds the shortest path in terms of number of transitions. It does not find the least-cost path. We will quickly cover an algorithm which does find the least-cost path.

Uniform Cost Search

Expand cheapest node first:
Fringe is a priority queue

Cost contours

Priority Queue Refresher

- A priority queue is a data structure in which you can insert and retrieve (key, value) pairs with the following operations:
 - push(key, value) inserts (key, value) into the queue.
 - pop() returns the key with the lowest value, and removes it from the queue.
- You can decrease a key’s priority by pushing it again
- Unlike a regular queue, insertions aren’t constant time, usually O(log n)
- We’ll need priority queues for cost-sensitive search methods

Uniform Cost Search

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time (in nodes)</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>Y</td>
<td>N</td>
<td>O(b^m)</td>
<td>O(b^m)</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>N*</td>
<td>O(b^m-1)</td>
<td>O(b^m-1)</td>
</tr>
<tr>
<td>UCS</td>
<td>Y*</td>
<td>Y</td>
<td>O(b^m^2)</td>
<td>O(b^m^2)</td>
</tr>
</tbody>
</table>

C/viriders

* UCS can fail if actions can get arbitrarily cheap

Uniform Cost Issues

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location
Uniform Cost Search Example

Search Heuristics
- Any estimate of how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance

Heuristics

Best First / Greedy Search
- Expand the node that seems closest...
- What can go wrong?

Best First / Greedy Search
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking
- Like DFS in completeness (finite states w/ cycle checking)
Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Best-first orders by goal proximity, or forward cost $h(n)$

A* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Tag Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic h is **admissible** (optimistic) if:
 $$h(n) \leq h^*(n)$$
 where $h^*(n)$ is the true cost to a nearest goal

Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Properties of A*

Uniform-Cost

- b

A*

- b

UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

Example: Explored States with A*

Heuristic: manhattan distance ignoring walls

Comparison

- Greedy

- Uniform Cost

- A star

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

- Often, admissible heuristics are solutions to relaxed problems, with new actions (“some cheating”) available

- Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)

This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>UCS</th>
<th>TILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tiles misplaced</td>
<td>112</td>
<td>13</td>
</tr>
</tbody>
</table>

Average nodes expanded when optimal path has length...

<table>
<thead>
<tr>
<th>Steps</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>6.300</td>
<td>3.6 x 10^6</td>
<td></td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

Why admissible?

- \(h(\text{start}) = 3 + 1 + 2 + \ldots \)
- \(= 18 \)

Average nodes expanded when optimal path has length...

<table>
<thead>
<tr>
<th>Steps</th>
<th>4 steps</th>
<th>8 steps</th>
<th>12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_b \) if \(\forall n : h_a(n) \geq h_b(n) \)
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 - \(h(n) = \max(h_a(n), h_b(n)) \)

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?
Graph Search

- In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to \(G' \) that would have been in queue aren’t, because some worse \(n' \) for the same state as some \(n \) was dequeued and expanded first (disaster!)
- Take the highest such \(n \) in tree
- Let \(p \) be the ancestor which was on the queue when \(n' \) was expanded
- Assume \(f(p) < f(n) \)
- \(f(n') = f(n) \) because \(n' \) is suboptimal
- \(p \) would have been expanded before \(n' \)
- So \(n \) would have been expanded before \(n' \), too
- Contradiction!

Optimality

- Tree search:
 - \(A^* \) optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0 \))

- Graph search:
 - \(A^* \) optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)
 - Consistency implies admissibility
 - In general, natural admissible heuristics tend to be consistent

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node \(n \), and find its child \(n' \) to have lower f value?

YES:

- What can we require to prevent these inversions?
- Consistency: \(c(n, a, n') \geq h(n) - h(n') \)
- Real cost must always exceed reduction in heuristic

Summary: A*

- \(A^* \) uses both backward costs and (estimates of) forward costs
- \(A^* \) is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems