CS 188: Artificial Intelligence
Spring 2011

Lecture 4: A* + (beginnings of)
Constraint Satisfaction
1/31/2011

Pieter Abbeel – UC Berkeley
Many slides from Dan Klein and Max Likhachev

Announcements

- Project 1 (Search)
 - If you don’t have a class account yet, pick one up after lecture
 - Still looking for project partners? --- Come to front after lecture
- Lecture videos
 - In the works
Today

- A* (tree) search
 - Admissible heuristics
- Graph search
 - Consistent heuristics
- Extensions
 - Weighted A*: $f = g + \varepsilon h$
 - Anytime A*
 - Memory issue (O(n)) \rightarrow IDA*
 - Bi-directional
- Example Applications
- (Beginnings of CSPs)

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)
- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
General Tree Search

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?

A* Review

- A* uses both backward costs g and forward estimate h: \(f(n) = g(n) + h(n) \)
- A* tree search is optimal with admissible heuristics (optimistic future cost estimates)
 - Proof forthcoming
- Heuristic design is key: relaxed problems can help
- Special cases:
 - Greedy: \(g = 0 \) [non-optimal!]
 - Uniform cost: \(h = 0 \) [optimal]
Comparison

Greedy

Uniform Cost

A star

UCS vs A* Contours

- Uniform-cost expanded in all directions

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.
- Often, admissible heuristics are solutions to relaxed problems, with new actions (“some cheating”) available.
- Inadmissible heuristics are often useful too (why?)

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 $$ h(n) \leq h^*(n) $$
 where $h^*(n)$ is the true cost to a nearest goal.
- Example:
- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \(h(\text{start}) = 8 \)
- This is a relaxed-problem heuristic

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Average nodes expanded when optimal path has length…</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>(112)</td>
</tr>
<tr>
<td>TILES</td>
<td>(13)</td>
</tr>
<tr>
<td>...4 steps</td>
<td>(6,300)</td>
</tr>
<tr>
<td>...8 steps</td>
<td>(3.6 \times 10^6)</td>
</tr>
<tr>
<td>...12 steps</td>
<td>227</td>
</tr>
</tbody>
</table>
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why admissible?

\[h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \]

<table>
<thead>
<tr>
<th>Average nodes expanded when optimal path has length…</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
<tr>
<td>MANHATTAN</td>
<td>12</td>
<td>25</td>
<td>73</td>
</tr>
</tbody>
</table>

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node!
Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Optimality of A*: Blocking

Proof:
- What could go wrong?
 - We’d have to have to pop a suboptimal goal \(G \) off the fringe before \(G^* \)

This can’t happen:
- Imagine a suboptimal goal \(G \) is on the queue
- Some node \(n \) which is a subpath of \(G^* \) must also be on the fringe (why?)
- \(n \) will be popped before \(G \)

\[f(n) = g(n) + h(n) \]
\[g(n) + h(n) \leq g(G^*) \]
\[g(G^*) < g(G) \]
\[g(G) = f(G) \]
\[f(n) < f(G) \]
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- Very simple fix: never expand a state twice

```plaintext
function Graph-Search(problem, fringe) returns a solution, or failure
  closed — an empty set
  fringe — Insert(Make-NODE(Initial-State[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node — Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
      add State[node] to closed
      fringe — InsertAll(Expand(node, problem), fringe)
  end
```

- Can this wreck completeness? Optimality?
Optimality of A* Graph Search

Proof:
- New possible problem: nodes on path to G^* that would have been in queue aren’t, because some worse n' for the same state as some n was dequeued and expanded first (disaster!)
- Take the highest such n in tree
- Let p be the ancestor which was on the queue when n' was expanded
- Assume $f(p) < f(n)$
- $f(n) < f(n')$ because n' is suboptimal
- p would have been expanded before n'
- So n would have been expanded before n', too
- Contradiction!

Consistency

- Wait, how do we know parents have better f-values than their successors?
- Couldn’t we pop some node n, and find its child n' to have lower f value?
- YES:

\[
g = 10 \quad 3 \quad h = 0 \quad h = 8
\]

- What can we require to prevent these inversions?
- Consistency: $c(n, a, n') \geq h(n) - h(n')$
- Real cost must always exceed reduction in heuristic
A* Graph Search Gone Wrong

State space graph

- **S** (h=2)
- **A** (h=4)
- **B** (h=1)
- **C** (h=1)
- **G** (h=0)

Search tree

- **S** (0+2) → **A** (1+4) → **C** (2+1) → **G** (6+0)
- **B** (1+1)

Note: C is already in the closed-list, hence not placed in the priority queue.

Consistency

The story on Consistency:

- **Definition:**
 \[\text{cost}(A \text{ to } C) + h(C) \geq h(A) \]

- **Consequence in search tree:**
 - Two nodes along a path: \(N_A, N_C \)
 - \(g(N_C) = g(N_A) + \text{cost}(A \text{ to } C) \)
 - \(g(N_C) + h(C) \geq g(N_A) + h(A) \)

- **The f value along a path never decreases**
- **Non-decreasing f means you’re optimal to every state (not just goals)**
Optimality Summary

- **Tree search:**
 - A^* optimal if heuristic is admissible (and non-negative)
 - Uniform Cost Search is a special case ($h = 0$)

- **Graph search:**
 - A^* optimal if heuristic is consistent
 - UCS optimal ($h = 0$ is consistent)

- **Consistency implies admissibility**
 - Challenge: Try to prove this.
 - Hint: try to prove the equivalent statement *not admissible implies not consistent*

- In general, natural admissible heuristics tend to be consistent
- Remember, costs are always positive in search!

Today

- **A^* (tree) search**
 - Admissible heuristics
- **Graph search**
 - Consistent heuristics
- **Extensions**
 - Weighted A^*: $f = g + \epsilon h$
 - Anytime A^*
 - Memory issue ($O(n)$) \rightarrow IDA*
 - Bi-directional
- **Example Applications**
- **(Beginnings of CSPs)**
Weighted A* $f = g + \varepsilon h$

- **Weighted A***: expands states in the order of $f = g + \varepsilon h$ values,
 - $\varepsilon > 1$ = bias towards states that are closer to goal

Weighted A* $f = g + \varepsilon h : \varepsilon = 0$ --- Uniform Cost Search
Weighted A* $f = g + \varepsilon h : \varepsilon = 1$ --- A*

- When $\varepsilon > 1$, shallow minima for $h(s) - h^*(s)$ function are key to finding solution fast.
Weighted A* \(f = g + \varepsilon h : \varepsilon > 1 \)

- Trades off optimality for speed
- \(\varepsilon \)-suboptimal:
 - \(\text{cost(solution)} \leq \varepsilon \cdot \text{cost(optimal solution)} \)
 - Test your understanding by trying to prove this!
- In many domains, it has been shown to be orders of magnitude faster than A*
- Research becomes to develop a heuristic function that has shallow local minima

Anytime A

- Weighted A*
 - Trades off optimality for speed
 - \(\varepsilon \)-suboptimal

- Anytime A*
 - For \(\varepsilon \in \{ \varepsilon_1, \varepsilon_2, \ldots, 1 \} \)
 - Run weighted A* with current \(\varepsilon \)

- [[ARA* and D*]
 - efficient version of above that reuses state values within each iteration]]**
A* Memory Issues

- A* does provably minimum number of expansions \(O(n)\) for finding a provably optimal solution
- Memory requirements of A* \(O(n)\) can be improved though
- Memory requirements of weighted A* are often but not always better

IDA* (Iterative Deepening A*)

1. set \(f_{\text{max}} = 1\) (or some other small value)
2. execute (previously explained) DFS that does not expand states with \(f > f_{\text{max}}\)
3. If DFS returns a path to the goal, return it
4. Otherwise \(f_{\text{max}} = f_{\text{max}} + 1\) (or larger increment) and go to step 2

- Complete and optimal
- Memory: \(O(bs)\), where \(b\) – max. branching factor, \(s\) – search depth of optimal path
- Complexity: \(O(kb^s)\), where \(k\) is the number of times DFS is called
Bi-directional search

- If only 1 goal state:
 - Can simultaneously run two searches:
 - Search 1 starts at the START state
 - Search 2 starts at the GOAL state

 \(\rightarrow \) to find path from START to GOAL only requires two searches of depth \(s/2 \) rather than one of depth \(s \)

 \(\rightarrow O(b^{s/2}) \) vs. \(O(b^s) \)

- Challenge: think about how to run bidirectional A*

Robotics Examples

- Urban Challenge
 - Successor function?
 - Heuristic?

- Door Opening
 - Successor function?
 - Heuristic?
Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Today

- A* (tree) search
 - Admissible heuristics
- Graph search
 - Consistent heuristics
- Extensions
 - Weighted A*: $f = g + \text{eps} \times h$
 - Anytime A*
 - Memory issue (O(n)) → IDA*
 - Bi-directional
- Example Applications
- (Beginnings of CSPs)
What is Search For?

- Models of the world: single agents, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables \(X_i \) with values from a domain \(D \) (sometimes \(D \) depends on \(i \))
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms
Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 \[
 \forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \sum_{i,j} X_{ij} = N
 \]

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)
 - or -
 Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
 \ldots
Example: Map-Coloring

- Variables: \(WA, NT, Q, NSW, V, SA, T \)
- Domain: \(D = \{ \text{red, green, blue} \} \)
- Constraints: adjacent regions must have different colors
 \[WA \neq NT \]
 \[(WA, NT) \in \{ (\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots \} \]
- Solutions are assignments satisfying all constraints, e.g.:
 \[\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green} \} \]

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- Variables (circles):
 \[F, T, U, W, R, O, X_1, X_2, X_3 \]

- Domains:
 \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

- Constraints (boxes):
 \(\text{alldiff}(F, T, U, W, R, O) \)
 \[O + O = R + 10 \cdot X_1 \]
 \[\ldots \]

Example: Sudoku

- Variables:
 - Each (open) square

- Domains:
 - \(\{1, 2, \ldots, 9\} \)

- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

Look at all intersections
Adjacent intersections impose constraints on each other

Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^d)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start-end state of a robot
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)
Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq green \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…