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CS 188: Artificial Intelligence 

Spring 2011

Lecture 4: A* + (beginnings of) 

Constraint Satisfaction

1/31/2011

Pieter Abbeel – UC Berkeley

Many slides from Dan Klein and Max Likhachev

Announcements

� Project 1 (Search) 

� If you don’t have a class account yet, pick one up after lecture

� Still looking for project partners?  --- Come to front after lecture

� Lecture videos
� In the works

Today

� A* (tree) search

� Admissible heuristics

� Graph search

� Consistent heuristics

� Extensions

� Weighted A*: f = g + eps h

� Anytime A*

� Memory issue (O(n)) � IDA*

� Bi-directional

� Example Applications

� (Beginnings of CSPs)

Recap: Search

� Search problem:
� States (configurations of the world)

� Successor function: a function from states to 
lists of (state, action, cost) triples; drawn as a graph

� Start state and goal test

� Search tree:
� Nodes: represent plans for reaching states

� Plans have costs (sum of action costs)

� Search Algorithm:
� Systematically builds a search tree

� Chooses an ordering of the fringe (unexplored nodes)

General Tree Search

� Important ideas:
� Fringe
� Expansion
� Exploration strategy

� Main question: which fringe nodes to explore?

Detailed pseudocode 
is in the book!

A* Review

� A* uses both backward costs g and forward 
estimate h: f(n) = g(n) + h(n)

� A* tree search is optimal with admissible heuristics 
(optimistic future cost estimates)

� Proof forthcoming

� Heuristic design is key: relaxed problems can help

� Special cases:

� Greedy: g = 0  [non-optimal!]

� Uniform cost: h = 0  [optimal]
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Comparison

Uniform Cost

Greedy

A star

UCS vs A* Contours

� Uniform-cost expanded 

in all directions

� A* expands mainly 
toward the goal, but 

does hedge its bets to 

ensure optimality

Start Goal

Start Goal

Creating Admissible Heuristics

� Most of the work in solving hard search problems optimally 
is in coming up with admissible heuristics

� Often, admissible heuristics are solutions to relaxed 
problems, with new actions (“some cheating”) available

� Inadmissible heuristics are often useful too (why?)

15
366

Admissible Heuristics

� A heuristic h is admissible (optimistic) if:

where             is the true cost to a nearest goal

� Example:

� Coming up with admissible heuristics is most of 
what’s involved in using A* in practice.
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Example: 8 Puzzle

� What are the states?

� How many states?

� What are the actions?

� What states can I reach from the start state?

� What should the costs be?

8 Puzzle I

� Heuristic: Number of 
tiles misplaced

� Why is it admissible?

� h(start) =

� This is a relaxed-
problem heuristic

8
Average nodes expanded when 

optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227
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8 Puzzle II

� What if we had an 
easier 8-puzzle where 
any tile could slide any 
direction at any time, 
ignoring other tiles?

� Total Manhattan 
distance

� Why admissible?

� h(start) =

3 + 1 + 2 + …

= 18

Average nodes expanded when 

optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

8 Puzzle III

� How about using the actual cost as a 

heuristic?

� Would it be admissible?

� Would we save on nodes expanded?

� What’s wrong with it?

� With A*: a trade-off between quality of 

estimate and work per node!

Trivial Heuristics, Dominance

� Dominance: ha ≥ hc if

� Heuristics form a semi-lattice:

� Max of admissible heuristics is admissible

� Trivial heuristics

� Bottom of lattice is the zero heuristic (what 

does this give us?)

� Top of lattice is the exact heuristic

Optimality of A*: Blocking

Proof:

� What could go wrong?

� We’d have to have to pop a 
suboptimal goal G off the 
fringe before G*

� This can’t happen:

� Imagine a suboptimal 
goal G is on the queue

� Some node n which is a 
subpath of G* must also 
be on the fringe (why?)

� n will be popped before G

…

Tree Search: Extra Work!

� Failure to detect repeated states can cause 
exponentially more work.  Why?

Graph Search

� Very simple fix: never expand a state twice

� Can this wreck completeness?  Optimality?
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Optimality of A* Graph Search

Proof:

� New possible problem: nodes on path to 

G* that would have been in queue aren’t, 
because some worse n’ for the same 

state as some n was dequeued and 

expanded first (disaster!)

� Take the highest such n in tree

� Let p be the ancestor which was on the 
queue when n’ was expanded

� Assume f(p) < f(n)

� f(n) < f(n’) because n’ is suboptimal

� p would have been expanded before n’

� So n would have been expanded before 

n’, too

� Contradiction!

Consistency

� Wait, how do we know parents have better f-vales than 
their successors?

� Couldn’t we pop some node n, and find its child n’ to 
have lower f value?

� YES:

� What can we require to prevent these inversions?

� Consistency:

� Real cost must always exceed reduction in heuristic

A

B

G

3
h = 0

h = 10

g = 10

h = 8

A* Graph Search Gone Wrong

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1) C (3+1)

G (6+0)

S

A

B

C

G

State space graph Search tree

C is already in 
the closed-list, 

hence not 
placed in the 

priority queue

Consistency
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A

C

G

h=4

h=1
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The story on Consistency:

• Definition: 
cost(A to C) + h(C) ≥ h(A)

• Consequence in search tree:

Two nodes along a path: NA, NC

g(NC) = g(NA) + cost(A to C) 

g(NC) + h(C) ≥ g(NA) + h(A)

• The f value along a path never 
decreases

• Non-decreasing f means you’re 
optimal to every state (not just goals)

Optimality Summary
� Tree search:

� A* optimal if heuristic is admissible (and non-negative)

� Uniform Cost Search is a special case (h = 0)

� Graph search:
� A* optimal if heuristic is consistent
� UCS optimal (h = 0 is consistent)

� Consistency implies admissibility
� Challenge:Try to prove this.  
� Hint: try to prove the equivalent statement not admissible implies not 

consistent

� In general, natural admissible heuristics tend to be consistent

� Remember, costs are always positive in search!

Today

� A* (tree) search

� Admissible heuristics

� Graph search

� Consistent heuristics

� Extensions

� Weighted A*: f = g + eps h

� Anytime A*

� Memory issue (O(n)) � IDA*

� Bi-directional

� Example Applications

� (Beginnings of CSPs)
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� Weighted A*: expands states in the order of 

f = g+εh values, 

ε > 1 = bias towards states that are closer to goal

Weighted A* f = g+εh

University of Pennsylvania 30

Weighted A* f = g+εh : ε = 0  --- Uniform Cost Search 

sgoal

sstart

31

Weighted A* f = g+εh : ε = 1 --- A*

sgoal

sstart

32

Weighted A* f = g+εh : ε > 1

sstart

sgoal

key to finding solution fast:
shallow minima for h(s)-h*(s) function

33

Weighted A* f = g+εh : ε > 1

� Trades off optimality for speed

� ε-suboptimal:
� cost(solution) ≤ ε·cost(optimal solution)

� Test your understanding by trying to prove this!

� In many domains, it has been shown to be 

orders of magnitude faster than A*

� Research becomes to develop a heuristic 

function that has shallow local minima

Anytime A*

� Weighted A*

� Trades off optimality for speed

� ε-suboptimal

� Anytime A*

� For ǫ ∈ { ǫ1, ǫ2, …, 1}

� Run weighted A* with current ǫ

� [[ ARA*  and D*

� efficient version of above that reuses state values 
within each iteration ]]**
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A* Memory Issues

� A* does provably minimum number of expansions (O(n)) 
for finding a provably optimal solution

� Memory requirements of A* (O(n)) can be improved 
though

� Memory requirements of weighted A* are often but not 
always better

36

A* Memory Issues � IDA*

� IDA* (Iterative Deepening A*) 

1. set fmax = 1 (or some other small value)

2. execute (previously explained) DFS that does not expand 

states with f>fmax

3. If DFS returns a path to the goal, return it

4. Otherwise fmax= fmax+1 (or larger increment) and go to step 2

� Complete and optimal

� Memory: O(bs), where b – max. branching factor, s – search 
depth of optimal path

� Complexity: O(kbs), where k is the number of times DFS is called

Bi-directional search

� If only 1 goal state:

� Can simultaneously run two searches:

� Search 1 starts at the START state

� Search  2 starts at the GOAL state

� � to find path from START to GOAL only 
requires two searches of depth s/2 rather 
than one of depth s

� � O(b(s/2)) vs. O(bs)

� Challenge: think about how to run 

bidirectional A*

Robotics Examples

� Urban Challenge 

� Successor function?

� Heuristic?

� Door Opening

� Successor function?

� Heuristic?

Other A* Applications

� Pathing / routing problems

� Resource planning problems

� Robot motion planning

� Language analysis

� Machine translation

� Speech recognition

� …

Today

� A* (tree) search

� Admissible heuristics

� Graph search

� Consistent heuristics

� Extensions

� Weighted A*: f = g + eps h

� Anytime A*

� Memory issue (O(n)) � IDA*

� Bi-directional

� Example Applications

� (Beginnings of CSPs)
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What is Search For?

� Models of the world: single agents, deterministic actions, 
fully observed state, discrete state space

� Planning: sequences of actions

� The path to the goal is the important thing

� Paths have various costs, depths

� Heuristics to guide, fringe to keep backups

� Identification: assignments to variables

� The goal itself is important, not the path

� All paths at the same depth (for some formulations)

� CSPs are specialized for identification problems
41

Constraint Satisfaction Problems

� Standard search problems:
� State is a “black box”: arbitrary data structure

� Goal test: any function over states
� Successor function can be anything

� Constraint satisfaction problems (CSPs):
� A special subset of search problems

� State is defined by variables X
i

with values from a 
domain D (sometimes D depends on i)

� Goal test is a set of constraints specifying 
allowable combinations of values for subsets of 
variables

� Simple example of a formal representation 
language

� Allows useful general-purpose algorithms with 
more power than standard search algorithms 42

Example: N-Queens

� Formulation 1:

� Variables:

� Domains:

� Constraints

43

Example: N-Queens

� Formulation 2:

� Variables:

� Domains:

� Constraints:

Implicit:

Explicit:

-or-

Example: Map-Coloring

� Variables:

� Domain:

� Constraints: adjacent regions must have 
different colors

� Solutions are assignments satisfying all 
constraints, e.g.:

46

Constraint Graphs

� Binary CSP: each constraint 
relates (at most) two variables

� Binary constraint graph: nodes 
are variables, arcs show 
constraints

� General-purpose CSP 
algorithms use the graph 
structure to speed up search. 
E.g., Tasmania is an 
independent subproblem!

47
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Example: Cryptarithmetic

� Variables (circles):

� Domains:

� Constraints (boxes):

48

Example: Sudoku

� Variables:

� Each (open) square

� Domains:

� {1,2,…,9}

� Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

Example: The Waltz Algorithm

� The Waltz algorithm is for interpreting line drawings of 
solid polyhedra

� An early example of a computation posed as a CSP 

� Look at all intersections
� Adjacent intersections impose constraints on each other

?
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Varieties of CSPs

� Discrete Variables
� Finite domains

� Size d means O(dn) complete assignments

� E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

� Infinite domains (integers, strings, etc.)

� E.g., job scheduling, variables are start/end times for each job

� Linear constraints solvable, nonlinear undecidable

� Continuous variables
� E.g., start-end state of a robot

� Linear constraints solvable in polynomial time by LP methods 
(see cs170 for a bit of this theory)

54

Varieties of Constraints

� Varieties of Constraints
� Unary constraints involve a single variable (equiv. to shrinking domains):

� Binary constraints involve pairs of variables:

� Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

� Preferences (soft constraints):
� E.g., red is better than green

� Often representable by a cost for each variable assignment
� Gives constrained optimization problems

� (We’ll ignore these until we get to Bayes’ nets)
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Real-World CSPs

� Assignment problems: e.g., who teaches what class

� Timetabling problems: e.g., which class is offered when 
and where?

� Hardware configuration

� Transportation scheduling

� Factory scheduling

� Floorplanning

� Fault diagnosis

� … lots more!

� Many real-world problems involve real-valued 
variables…
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