Outline

- Zero-sum deterministic two player games
 - Minimax
 - Evaluation functions for non-terminal states
 - Alpha-Beta pruning
- Stochastic games
 - Single player: expectimax
 - Two player: expectiminimax
- Non-zero sum
- Markov decision processes (MDPs)
Minimax Example

Speeding Up Game Tree Search

- Evaluation functions for non-terminal states

- Pruning: not search parts of the tree
 - Alpha-Beta pruning does so without losing accuracy, $O(b^d) \rightarrow O(b^{d/2})$
Pruning

Alpha-Beta Pruning

- General configuration
 - We’re computing the MIN-VALUE at n
 - We’re looping over n’s children
 - n’s value estimate is dropping
 - a is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than a, MAX will avoid it, so can stop considering n’s other children
 - Define b similarly for MIN
Alpha-Beta Pruning Example

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above

Starting a/b

Raising a

Lowering b

Raising a

a is MAX’s best alternative here or above
b is MIN’s best alternative here or above
Alpha-Beta Pseudocode

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 $v \leftarrow -\infty$
 for a, s in SUCCESSORS(state) do $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s))$
 return v

function MAX-VALUE(state, α, β) returns a utility value
 inputs: state, current state in game
 α, the value of the best alternative for MAX along the path to state
 β, the value of the best alternative for MIN along the path to state
 if TERMINAL-TEST(state) then return UTILITY(state)
 $v \leftarrow -\infty$
 for a, s in SUCCESSORS(state) do
 $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta))$
 if $v \geq \beta$ then return v
 $\alpha \leftarrow \text{MAX}(\alpha, v)$
 return v

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root
- Values of intermediate nodes might be wrong!
- Good child ordering improves effectiveness of pruning
 - Heuristic: order by evaluation function or based on previous search
- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)
Outline

- Zero-sum deterministic two player games
 - Minimax
 - Evaluation functions for non-terminal states
 - Alpha-Beta pruning
- Stochastic games
 - Single player: expectimax
 - Two player: expectiminimax
- Non-zero sum
- Markov decision processes (MDPs)

Expectimax Search Trees

- What if we don’t know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
- Can do expectimax search to maximize average score
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children
- Later, we’ll learn how to formalize the underlying problem as a Markov Decision Process
Expectimax Pseudocode

```python
def value(s):
    if s is a max node return maxValue(s)
    if s is an exp node return expValue(s)
    if s is a terminal node return evaluation(s)

def maxValue(s):
    values = [value(s') for s' in successors(s)]
    return max(values)

def expValue(s):
    values = [value(s') for s' in successors(s)]
    weights = [probability(s, s') for s' in successors(s)]
    return expectation(values, weights)
```

Expectimax Quantities
Expectimax Pruning?

- Chance nodes
 - Chance nodes are like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Chance nodes average successor values (weighted)
- Each chance node has a probability distribution over its outcomes (called a model)
 - For now, assume we’re given the model
- Utilities for terminal states
 - Static evaluation functions give us limited-depth search

Estimate of true expectimax value (which would require a lot of work to compute)
Expectimax for Pacman

- Notice that we’ve gotten away from thinking that the ghosts are trying to minimize pacman’s score.
- Instead, they are now a part of the environment.
- Pacman has a belief (distribution) over how they will act.
- Quiz: Can we see minimax as a special case of expectimax?
- Quiz: what would pacman’s computation look like if we assumed that the ghosts were doing 1-ply minimax and taking the result 80% of the time, otherwise moving randomly?
- If you take this further, you end up calculating belief distributions over your opponents’ belief distributions over your belief distributions, etc…
 - Can get unmanageable very quickly!
Expectimax Utilities

- For minimax, terminal function scale doesn’t matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations

- For expectimax, we need magnitudes to be meaningful

Stochastic Two-Player

- E.g. backgammon
- Expectiminimax (!)
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax

```python
if state is a Max node then
  return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
  return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
  return average of ExpectiMinimax-Value of Successors(state)
```
Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon = 20 legal moves
 - Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Non-Zero-Sum Utilities

- Similar to minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own utility and propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically...
Outline

- Zero-sum deterministic two player games
 - Minimax
 - Evaluation functions for non-terminal states
 - Alpha-Beta pruning
- Stochastic games
 - Single player: expectimax
 - Two player: expectiminimax
- Non-zero sum
- Markov decision processes (MDPs)

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent’s utility is defined by the reward function
 - Must learn to act so as to maximize expected rewards
Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small “living” reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

Grid Futures

<table>
<thead>
<tr>
<th>Deterministic Grid World</th>
<th>Stochastic Grid World</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ![Deterministic Grid Futures](image3)
- ![Stochastic Grid Futures](image4)
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \in S \)
 - A set of actions \(a \in A \)
 - A transition function \(T(s, a, s') \)
 - Prob that \(a \) from \(s \) leads to \(s' \)
 - i.e., \(P(s' | s, a) \)
 - Also called the model
 - A reward function \(R(s, a, s') \)
 - Sometimes just \(R(s) \) or \(R(s') \)
 - A start state (or distribution)
 - Maybe a terminal state

- MDPs are a family of non-deterministic search problems
 - Reinforcement learning: MDPs where we don’t know the transition or reward functions

What is Markov about MDPs?

- Andrey Markov (1856-1922)

- “Markov” generally means that given the present state, the future and the past are independent

- For Markov decision processes, “Markov” means:
 \[
P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1} = a_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s_t, A_t = a_t)
 \]
In deterministic single-agent search problems, we want an optimal plan, or sequence of actions, from start to a goal. In an MDP, we want an optimal policy $\pi^*: S \rightarrow A$:

- A policy π gives an action for each state.
- An optimal policy maximizes expected utility if followed.
- Defines a reflex agent.

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s.

Example Optimal Policies:

- $R(s) = -0.01$
- $R(s) = -0.03$
- $R(s) = -0.4$
- $R(s) = -2.0$
Example: High-Low

- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say “high” or “low”
- New card is flipped
- If you’re right, you win the points shown on the new card
- Ties are no-ops
- If you’re wrong, game ends

Differences from expectimax:
- #1: get rewards as you go
- #2: you might play forever!

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: $T(s, a, s')$:
 - $P(s'=4 \mid 4, \text{Low}) = 1/4$
 - $P(s'=3 \mid 4, \text{Low}) = 1/4$
 - $P(s'=2 \mid 4, \text{Low}) = 1/2$
 - $P(s'=\text{done} \mid 4, \text{Low}) = 0$
 - $P(s'=4 \mid 4, \text{High}) = 1/4$
 - $P(s'=3 \mid 4, \text{High}) = 0$
 - $P(s'=2 \mid 4, \text{High}) = 0$
 - $P(s'=\text{done} \mid 4, \text{High}) = 3/4$
 - ...
- Rewards: $R(s, a, s')$:
 - Number shown on s' if $s \neq s'$ and a is “correct”
 - 0 otherwise
- Start: 3
Example: High-Low

![Diagram of MDP Search Trees]

MDP Search Trees

- Each MDP state gives an expectimax-like search tree

\[
T(s, a, s') = P(s'|s, a) \\
R(s, a, s')
\]

(s, a) is a q-state

(s, a, s') called a transition

s is a state
Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

\[[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]\]

\[[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots] \]

- Theorem: only two ways to define stationary utilities
 - Additive utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \]
 - Discounted utility:
 \[U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \]

Infinite Utilities?!

- Problem: infinite state sequences have infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “done” for High-Low)
 - Discounting: for \(0 < \gamma < 1 \)

\[U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma) \]

- Smaller \(\gamma \) means smaller “horizon” – shorter term focus
Discounting

- Typically discount rewards by $\gamma < 1$ each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s_0
 - Actions A
 - Transitions $P(s'|s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards
Optimal Utilities

- Fundamental operation: compute the values (optimal expectimax utilities) of states \(s \).
- Why? Optimal values define optimal policies!
- Define the value of a state \(s \):
 \(V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \)
- Define the value of a q-state \((s,a)\):
 \(Q^*(s,a) = \text{expected utility starting in } s, \text{ taking action } a, \text{ and thereafter acting optimally} \)
- Define the optimal policy:
 \(\pi^*(s) = \text{optimal action from state } s \)

The Bellman Equations

- Definition of “optimal utility” leads to a simple one-step lookahead relationship amongst optimal utility values:
 \(\text{Optimal rewards = maximize over first action and then follow optimal policy} \)
- Formally:
 \[
 V^*(s) = \max_a Q^*(s,a) \\
 Q^*(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right] \\
 V^*(s) = \max_a \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]
 \]
Value Estimates

- Calculate estimates $V_k^*(s)$
 - Not the optimal value of s!
 - The optimal value considering only next k time steps (k rewards)
 - As $k \to \infty$, it approaches the optimal value

- Almost solution: recursion (i.e. expectimax)
- Correct solution: dynamic programming