CS 188: Artificial Intelligence

Today

Structure of CSPs

Local Search

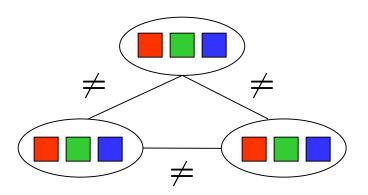
Reminder: CSPs

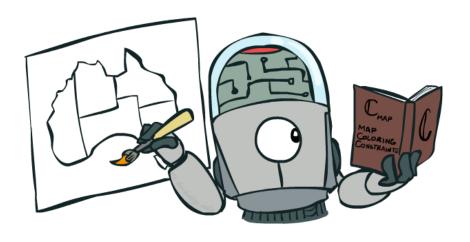
CSPs:

- Variables
- Domains
- Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary

Goals:

- Here: find any solution
- Also: find all, find best, etc.





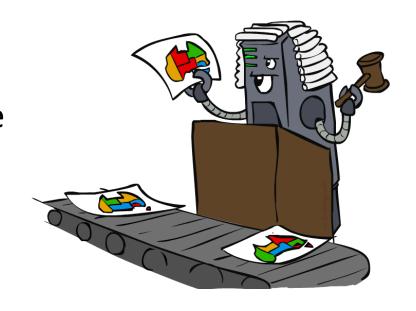
Standard Search Problems

Standard search problems:

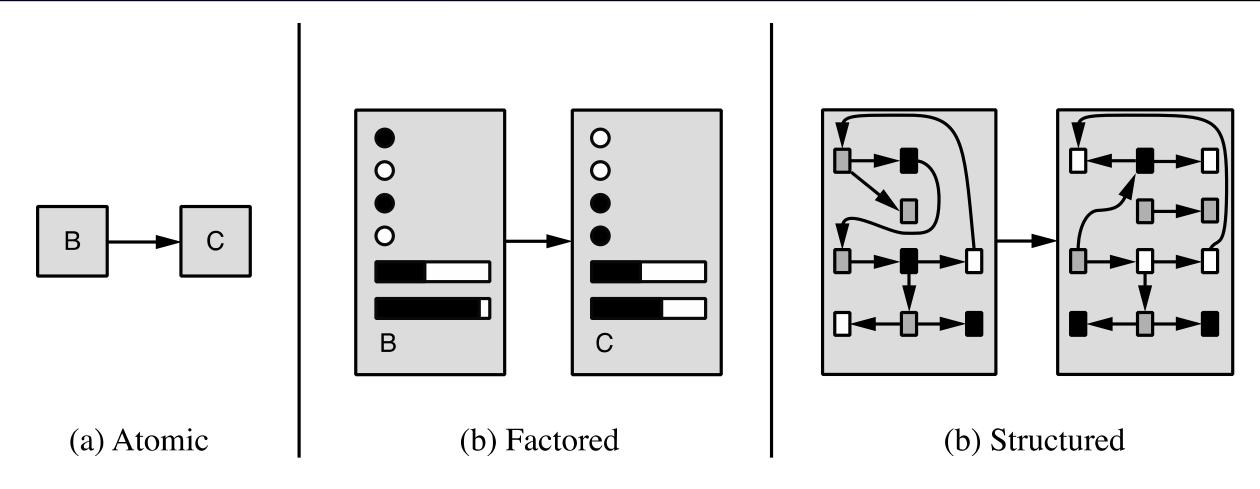
- State is a black box: arbitrary data structure
- Goal test is a black box test on states
- Actions are black box data structures
- Transition model is a black box function

Consequences:

- Have to write new code for every new problem
- Have to devise heuristics for each new problem
- Cannot just choose actions that achieve the goal!
- Solution: formal representation for states, actions, goals



Spectrum of representations



Search, game-playing

CSPs, planning, propositional logic, Bayes nets, neural nets

First-order logic, databases, probabilistic programs

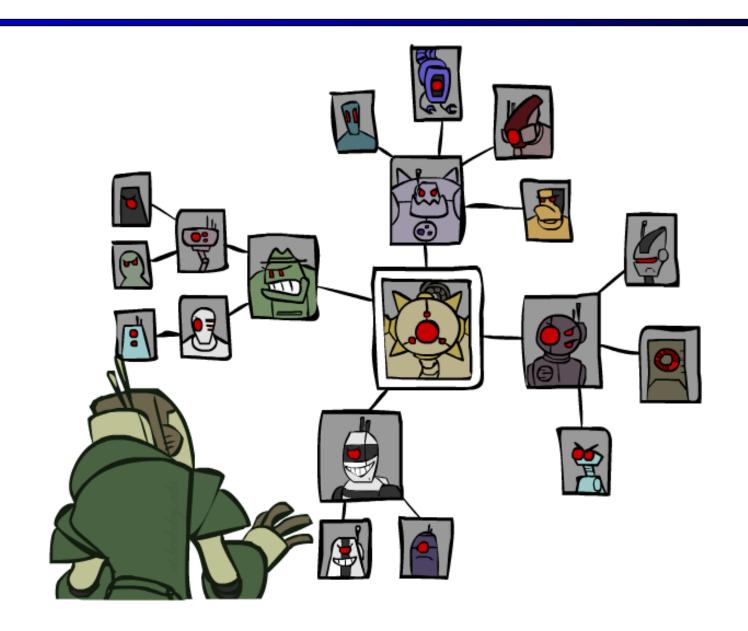
Backtracking Search

```
function Backtracking-Search(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
  for each value in Order-Domain-Values (var. assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Improving Backtracking

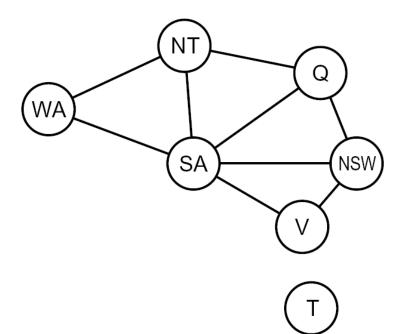
- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?

Structure

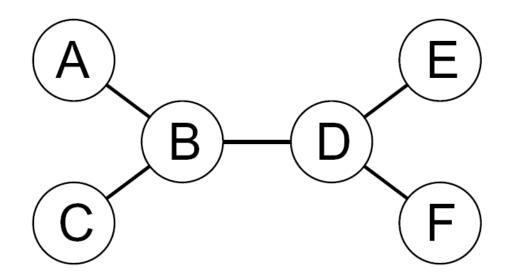


Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into n/c subproblems of only c variables each:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20, search 10 million nodes/sec
 - 2^{80} = 4 billion years
 - $(4)(2^{20}) = 0.4$ seconds



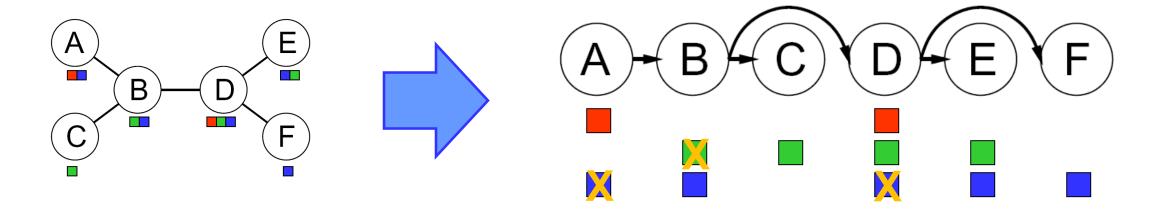
Tree-Structured CSPs



- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning in Bayes nets (later): an example of the relation between structural properties and the complexity of reasoning

Tree-Structured CSPs

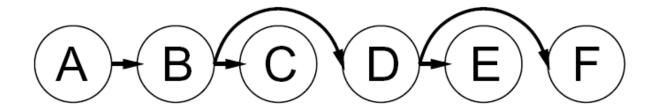
- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children



- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²)

Tree-Structured CSPs

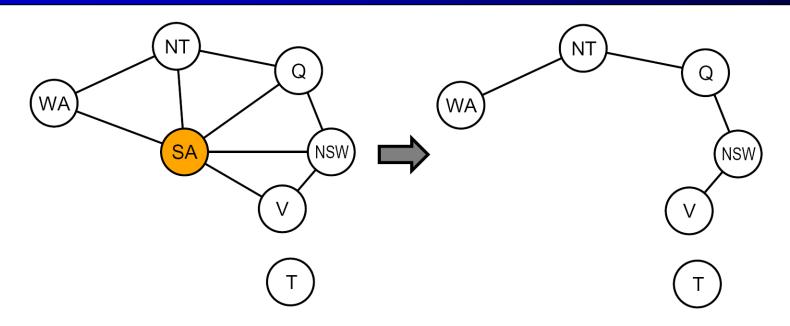
- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)



- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?

Improving Structure

Nearly Tree-Structured CSPs



- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime...
 - O((d^c) (n-c) d²), very fast for small c
 - E.g., 80 variables, c=10, 4 billion years -> 0.029 seconds

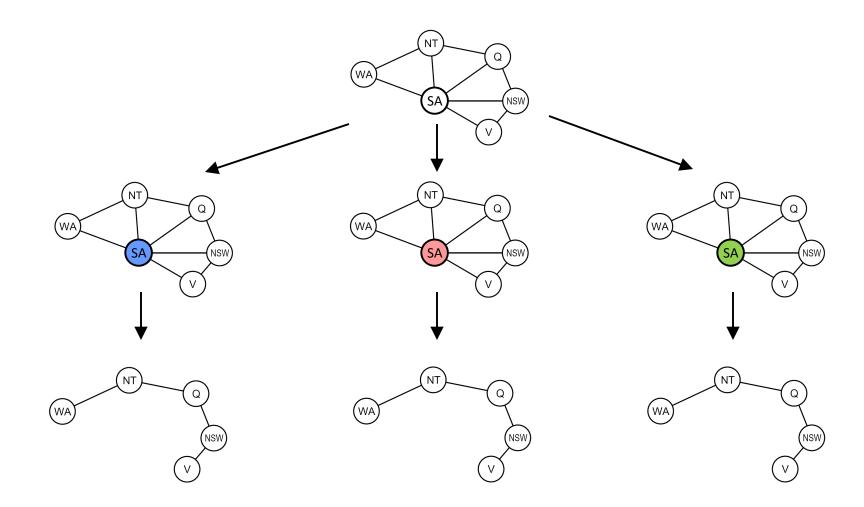
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

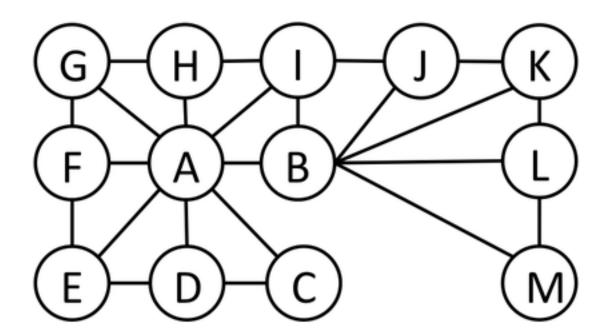
Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)



Cutset Quiz

Find the smallest cutset for the graph below.



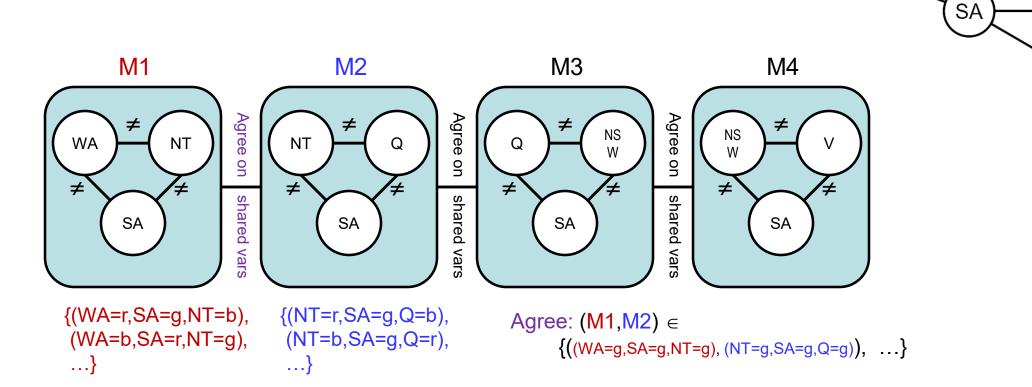
Tree Decomposition*

NT

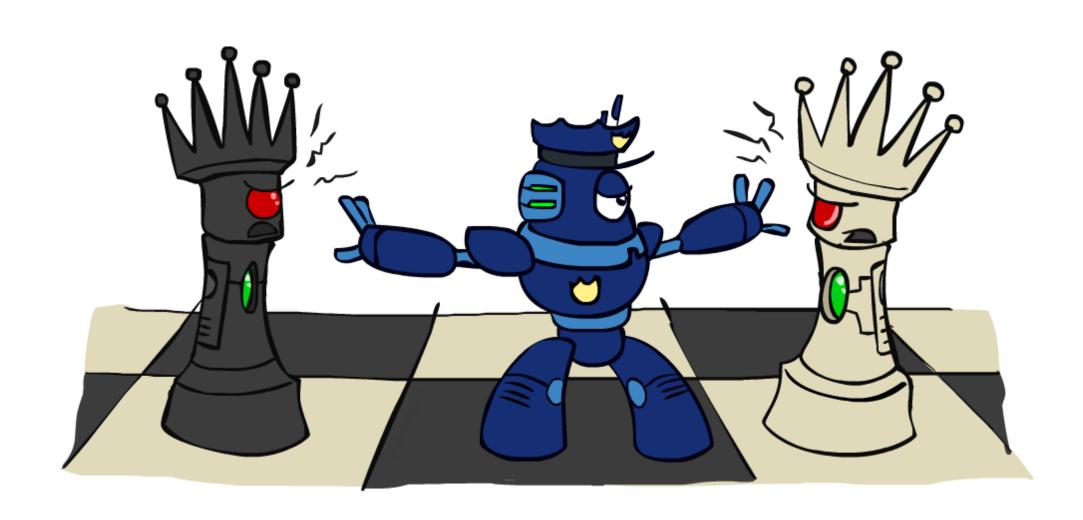
NSW

WA

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions



Iterative Improvement

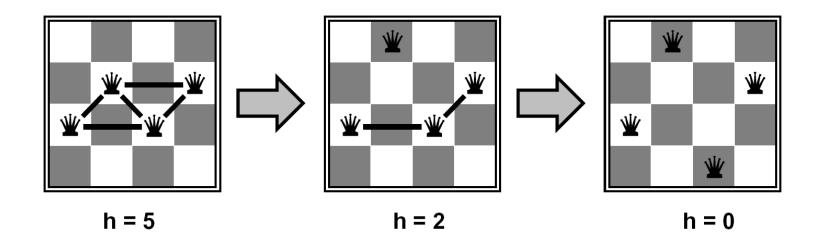


Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators reassign variable values
 - No tree, no fringe! "New age" algorithm

- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints

Example: 4-Queens



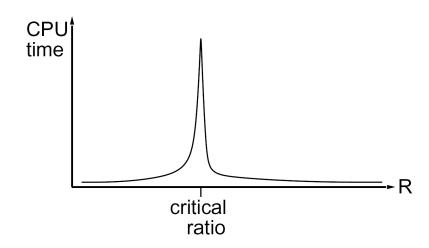
- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

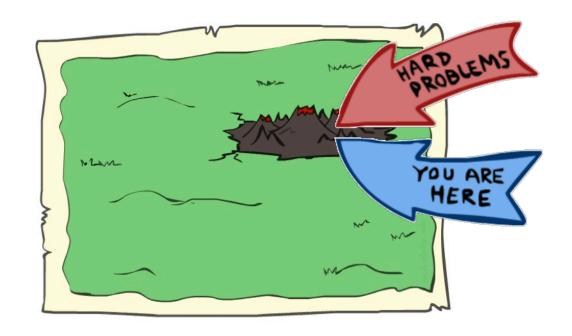
[Demo: coloring – iterative improvement]

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$



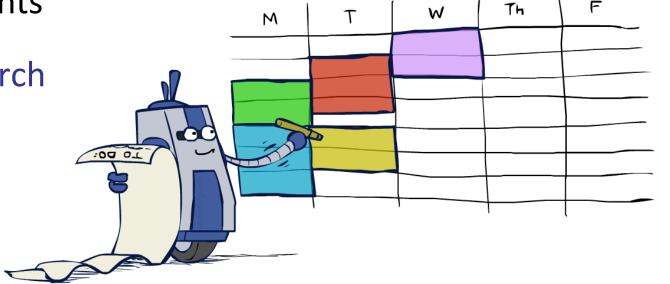


Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constraints

Basic solution: backtracking search

- Speed-ups:
 - Ordering
 - Filtering
 - Structure



Iterative min-conflicts is often effective in practice

Break quiz

Given a search problem P expressed in the usual way:

• initial state s_0 , states S, actions A, goal test G, transition model Result(s,a) and a time horizon T, construct a CSP C such that C has a solution exactly when P has a solution of length T, and the solution to P can be read off from the solution to C

Hint: You'll need some variables for each time step, including A_t (the action taken at time t). What are the constraints between time steps? Other constraints on particular time steps?

Break quiz answer

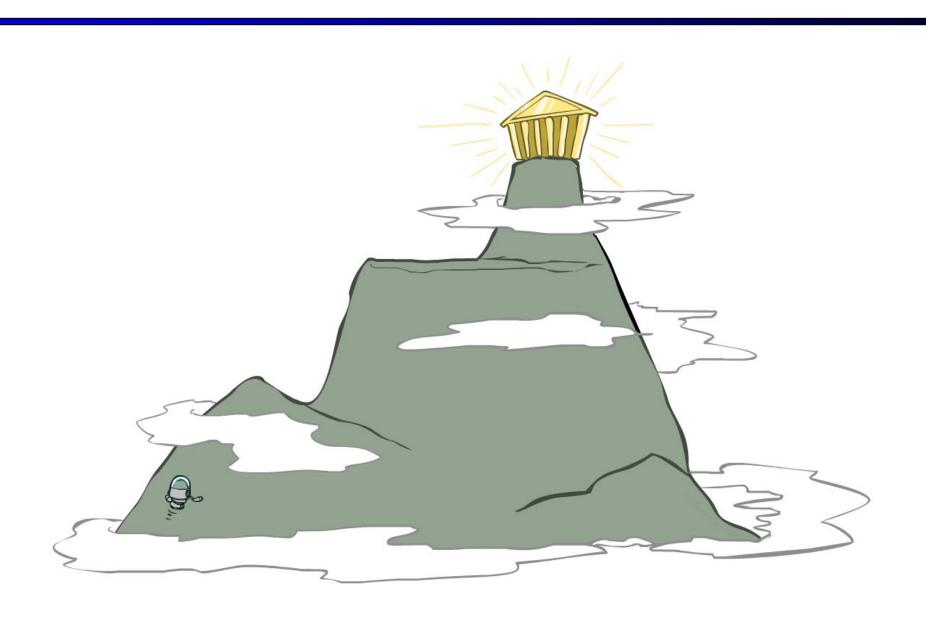
Variables of the CSP are

- Action variables $A_0, ..., A_{T-1}$ each with domain A
- State variables $S_0, ..., S_T$, each with domain S

Constraints of the CSP are

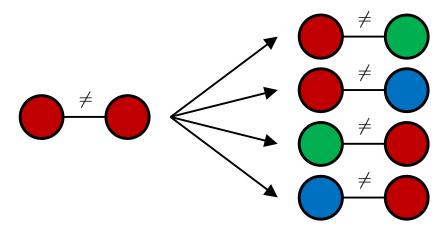
- $S_0 = S_0$
- S_T satisfies goal test G
- For t=0,...,T-1, $S_{t+1}=Result(S_t, A_t)$

Local Search



Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better
- New successor function: local changes



- Generally much faster and more memory efficient (but incomplete and suboptimal)
- Pretty much unavoidable when the state is "yourself"

Hill Climbing

Simple, general idea:

Start wherever

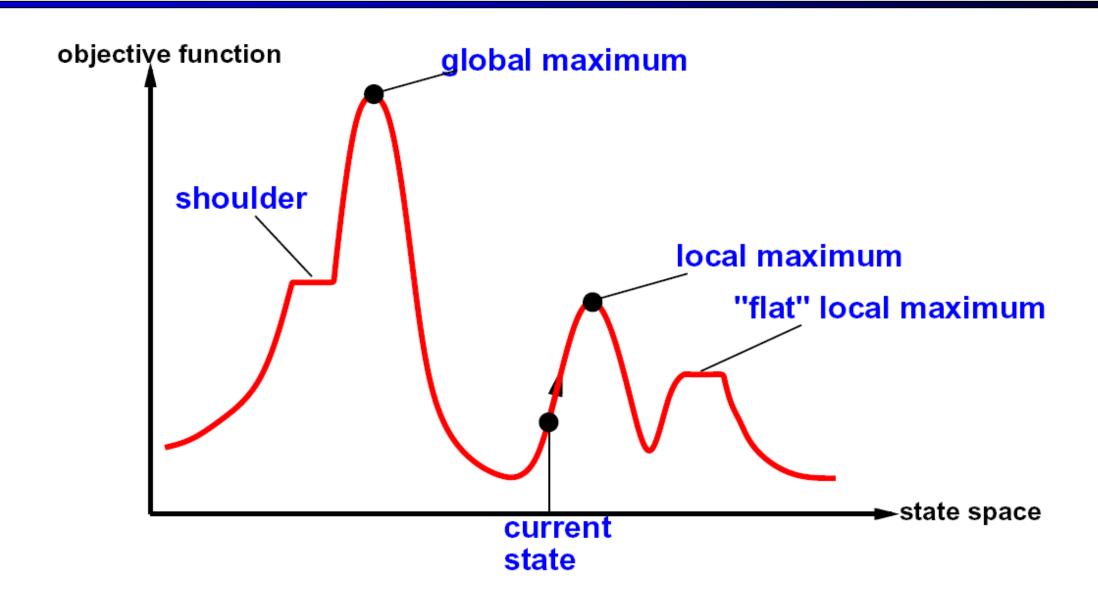
Repeat: move to the best neighboring state

If no neighbors better than current, quit

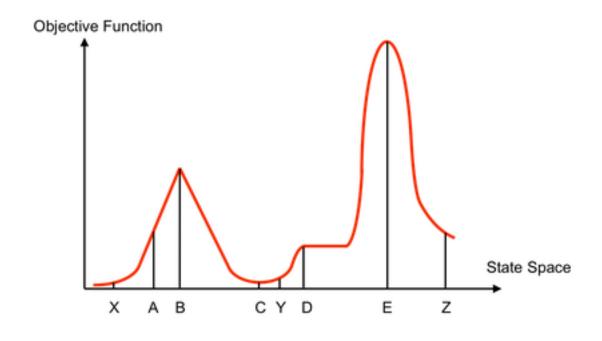
Hill Climbing

```
function HILL-CLIMBING (problem) returns a state that is a local maximum
   inputs: problem, a problem
   local variables: current, a node
                      neighbor, a node
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   loop do
        neighbor \leftarrow a highest-valued successor of current
       if Value[neighbor] \leq Value[current] then return State[current]
        current \leftarrow neighbor
   end
```

Hill Climbing Diagram



Hill Climbing Quiz



Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

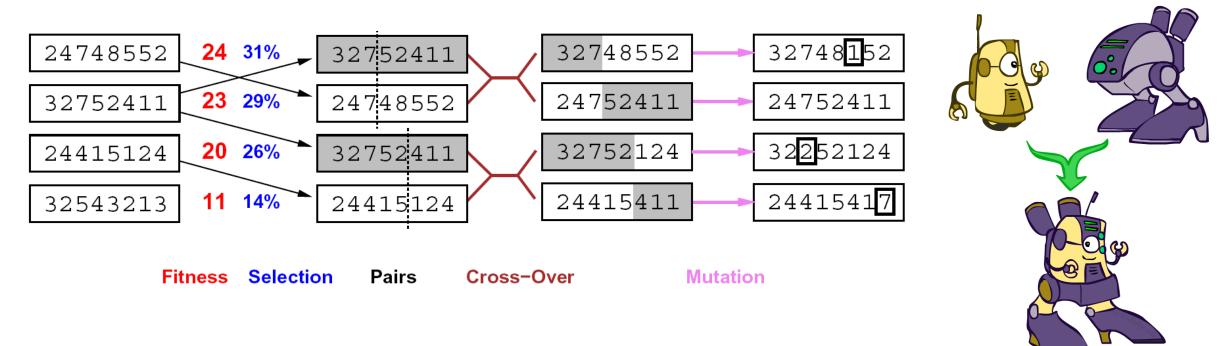
- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```


Simulated Annealing

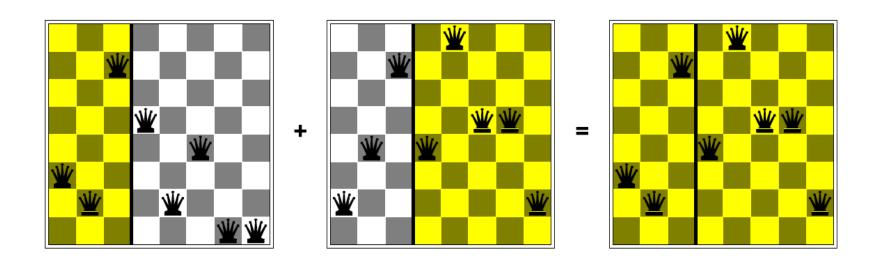
- Theoretical guarantee:
 - $lacksquare Stationary distribution (Boltzmann): \ p(x) \propto e^{rac{E(x)}{kT}}$
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - "Slowly enough" may mean exponentially slowly
 - Random restart hillclimbing also converges to optimal state...

Genetic Algorithms



- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

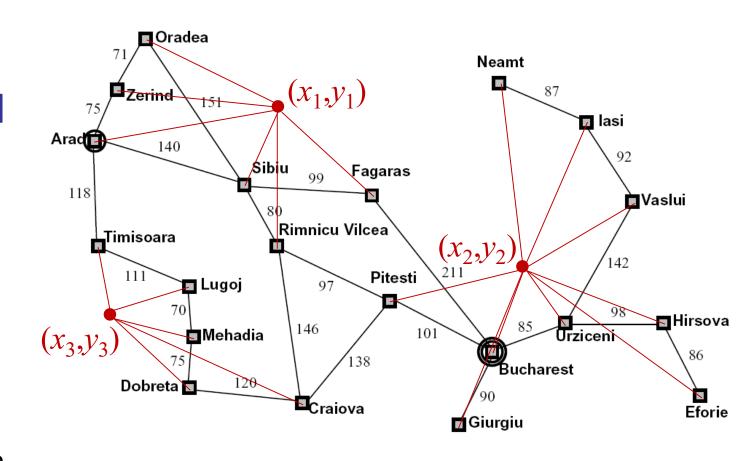
Example: N-Queens



- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Local Search in Continuous Spaces

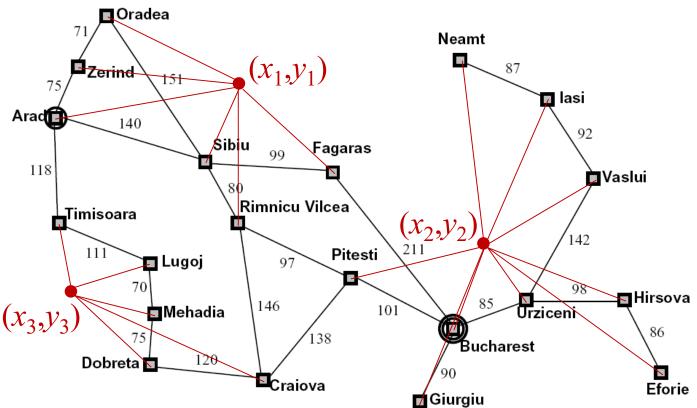
- Put 3 airports in Romania to minimize the sum of squared distance of each city to its nearest airport
- Variables: x₁,y₁,x₂,y₂,x₃,y₃
- C_i = set of cities nearest to i
- Cost $f(x_1, y_1, x_2, y_2, x_3, y_3) =$ $\sum_{i=1}^{3} \sum_{c \in C_i} (x_i x_c)^2 + (y_i y_c)^2$



Local Search in Continuous Spaces

• Cost $f(x_1, y_1, x_2, y_2, x_3, y_3) =$ $\sum_{i=1}^{3} \sum_{c \in C_i} (x_i - x_c)^2 + (y_i - y_c)^2$

- Method 1: discretize, compute empirical gradient f(x₁+dx,y₁,x₂,y₂,x₃,y₃) etc.
- Method 2: stochastic descent: generate small random vector dx and accept if f(x+dx) < f(x)</p>



Local Search in Continuous Spaces

• Cost $f(x_1, y_1, x_2, y_2, x_3, y_3) =$ $\sum_{i=1}^{3} \sum_{c \in C_i} (x_i - x_c)^2 + (y_i - y_c)^2$

 Method 3: take small step along gradient vector

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right) \xrightarrow{(x_3, y_3)} \text{Dobreta}$$

$$\frac{\partial f}{\partial x_1} = 2\sum_{c \in C_1} (x_i - x_c)$$

