
CS 188: Artificial Intelligence
Constraint Satisfaction Problems II

and Local Search
Instructors: Sergey Levine and Stuart Russell

University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Today

 Structure of CSPs

 Local Search

Reminder: CSPs

 CSPs:
 Variables
 Domains
 Constraints

 Implicit (provide code to compute)
 Explicit (provide a list of the legal tuples)
 Unary / Binary / N-ary

 Goals:
 Here: find any solution
 Also: find all, find best, etc.

Standard Search Problems

 Standard search problems:
 State is a black box: arbitrary data structure
 Goal test is a black box test on states
 Actions are black box data structures
 Transition model is a black box function

 Consequences:
 Have to write new code for every new problem
 Have to devise heuristics for each new problem
 Cannot just choose actions that achieve the goal!

 Solution: formal representation for states, actions, goals

Spectrum of representations

Search,
game-playing

CSPs, planning,
propositional logic,
Bayes nets, neural nets

First-order logic,
databases,
probabilistic programs

Backtracking Search

Improving Backtracking

 General-purpose ideas give huge gains in speed
 … but it’s all still NP-hard

 Filtering: Can we detect inevitable failure early?

 Ordering:
 Which variable should be assigned next? (MRV)
 In what order should its values be tried? (LCV)

 Structure: Can we exploit the problem structure?

Structure

Problem Structure

 Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact

 Independent subproblems are identifiable as
connected components of constraint graph

 Suppose a graph of n variables can be broken into n/c
subproblems of only c variables each:
 Worst-case solution cost is O((n/c)(dc)), linear in n
 E.g., n = 80, d = 2, c =20, search 10 million nodes/sec
 280 = 4 billion years
 (4)(220) = 0.4 seconds

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to probabilistic reasoning in Bayes nets (later): an example of
the relation between structural properties and the complexity of reasoning

Tree-Structured CSPs
 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)

X
X

X

Tree-Structured CSPs

 Claim 1: After backward pass, all root-to-leaf arcs are consistent
 Proof: Each X→Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

 Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 Proof: Induction on position

 Why doesn’t this algorithm work with cycles in the constraint graph?

Improving Structure

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains
 Cutset conditioning: instantiate (in all ways) a set of variables such that

the remaining constraint graph is a tree
 Cutset size c gives runtime…
 O((dc) (n-c) d2), very fast for small c
 E.g., 80 variables, c=10, 4 billion years -> 0.029 seconds

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

 Find the smallest cutset for the graph below.

Tree Decomposition*
 Idea: create a tree-structured graph of mega-variables
 Each mega-variable encodes part of the original CSP
 Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) ∈
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

Agree on shared vars

NT

SA

≠
WA

≠ ≠

Q

SA

≠
NT

≠ ≠

Agree on shared vars

NS
W

SA

≠
Q

≠ ≠

Agree on shared vars

V

SA

≠NS
W

≠ ≠

Iterative Improvement

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No tree, no fringe! “New age” algorithm

 Algorithm: While not solved,
 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: coloring – iterative improvement]

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

 The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

 CSPs are a special kind of search problem:
 States are partial assignments
 Goal test defined by constraints

 Basic solution: backtracking search

 Speed-ups:
 Ordering
 Filtering
 Structure

 Iterative min-conflicts is often effective in practice

Break quiz

Given a search problem P expressed in the usual way:
 initial state s0, states S, actions A, goal test G, transition model Result(s,a)

and a time horizon T, construct a CSP C such that C has a solution
exactly when P has a solution of length T, and the solution to P can
be read off from the solution to C

Hint: You’ll need some variables for each time step, including At (the
action taken at time t). What are the constraints between time
steps? Other constraints on particular time steps?

Break quiz answer

Variables of the CSP are
 Action variables A0 ,…, AT-1 each with domain A
 State variables S0 ,…, ST , each with domain S

Constraints of the CSP are
 S0=s0

 ST satisfies goal test G
 For t=0,…,T-1, St+1=Result(St, At)

Local Search

Local Search

 Tree search keeps unexplored alternatives on the fringe (ensures completeness)

 Local search: improve a single option until you can’t make it better
 New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)
 Pretty much unavoidable when the state is “yourself”

Hill Climbing

 Simple, general idea:
 Start wherever
 Repeat: move to the best neighboring state
 If no neighbors better than current, quit

Hill Climbing

28

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up ?

Starting from Y, where do you end up ?

Starting from Z, where do you end up ?

Simulated Annealing
 Idea: Escape local maxima by allowing downhill moves

 But make them rarer as time goes on

31

Simulated Annealing

 Theoretical guarantee:
 Stationary distribution (Boltzmann):

 If T decreased slowly enough,
will converge to optimal state!

 Is this an interesting guarantee?

 Sounds like magic, but reality is reality:
 The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
 “Slowly enough” may mean exponentially slowly
 Random restart hillclimbing also converges to optimal state…

Genetic Algorithms

 Genetic algorithms use a natural selection metaphor
 Keep best N hypotheses at each step (selection) based on a fitness function
 Also have pairwise crossover operators, with optional mutation to give variety

 Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

 Why does crossover make sense here?
 When wouldn’t it make sense?
 What would mutation be?
 What would a good fitness function be?

Local Search in Continuous Spaces

 Put 3 airports in Romania to
minimize the sum of squared
distance of each city to its
nearest airport
 Variables: x1,y1,x2,y2,x3,y3

 Ci = set of cities nearest to i
 Cost f(x1,y1,x2,y2,x3,y3) =

35

(x1,y1)

(x3,y3)

(x2,y2)

Local Search in Continuous Spaces

 Cost f(x1,y1,x2,y2,x3,y3) =

 Method 1: discretize, compute
empirical gradient
f(x1+dx,y1,x2,y2,x3,y3) etc.
 Method 2: stochastic descent:

generate small random vector dx
and accept if f(x+dx) < f(x)

36

(x1,y1)

(x2,y2)

(x3,y3)

Local Search in Continuous Spaces

 Cost f(x1,y1,x2,y2,x3,y3) =

 Method 3: take small step along
gradient vector

37

(x1,y1)

(x2,y2)

(x3,y3)

	CS 188: Artificial Intelligence�
	Today
	Reminder: CSPs
	Standard Search Problems
	Spectrum of representations
	Backtracking Search
	Improving Backtracking
	Structure
	Problem Structure
	Tree-Structured CSPs
	Tree-Structured CSPs
	Tree-Structured CSPs
	Improving Structure
	Nearly Tree-Structured CSPs
	Cutset Conditioning
	Cutset Quiz
	Tree Decomposition*
	Iterative Improvement
	Iterative Algorithms for CSPs
	Example: 4-Queens
	Performance of Min-Conflicts
	Summary: CSPs
	Break quiz
	Break quiz answer
	Local Search
	Local Search
	Hill Climbing
	Hill Climbing
	Hill Climbing Diagram
	Hill Climbing Quiz
	Simulated Annealing
	Simulated Annealing
	Genetic Algorithms
	Example: N-Queens
	Local Search in Continuous Spaces
	Local Search in Continuous Spaces
	Local Search in Continuous Spaces

