
CS 188: Artificial Intelligence
Propositional Logic: Semantics, Inference, Agents

Instructor: Sergey Levine and Stuart Russell

University of California, Berkeley

You can think about deep learning as equivalent to ... our visual
cortex or auditory cortex. But, of course, true intelligence is a lot
more than just that, you have to recombine it into higher-level
thinking and symbolic reasoning, a lot of the things classical AI tried
to deal with in the 80s. … We would like to build up to this symbolic
level of reasoning — maths, language, and logic. So that’s a big part
of our work.

Demis Hassabis, CEO of Google Deepmind

Knowledge
 Knowledge base = set of sentences in a formal language
 Declarative approach to building an agent (or other system):
 Tell it what it needs to know (or have it Learn the knowledge)
 Then it can Ask itself what to do—answers should follow from the KB

 Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
 A single inference algorithm can answer any answerable question
 Cf. a search algorithm answers only “how to get from A to B” questions

Knowledge base
Inference engine

Domain-specific facts

Generic code

Logic

 Syntax: What sentences are allowed?
 Semantics:
 What are the possible worlds?
 Which sentences are true in which worlds? (i.e., definition of truth)

α1

α2 α3

Syntaxland Semanticsland

Examples

 Propositional logic
 Syntax: P ∨ (¬Q ∧ R); X1 ⇔ (Raining ⇒ Sunny)
 Possible world: {P=true,Q=true,R=false,S=true} or 1101
 Semantics: α ∧ β is true in a world iff α is true and β is true (etc.)

 First-order logic
 Syntax: ∀x ∃y P(x,y) ∧ ¬Q(Joe,f(x)) ⇒ f(x)=f(y)
 Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for < o1, o3>;

f(o1)=o1; Joe=o3; etc.
 Semantics: φ(σ) is true in a world if σ=oj and φ holds for oj; etc.

Inference: entailment

 Entailment: α |= β (“α entails β” or “β follows from α”) iff in
every world where α is true, β is also true
 I.e., the α-worlds are a subset of the β-worlds [models(α) ⊆ models(β)]

 In the example, α2 |= α1

 (Say α2 is ¬Q ∧ R ∧ S ∧ W
α1 is ¬Q)

α1

α2

Inference: proofs

 A proof is a demonstration of entailment between α and β
 Method 1: model-checking
 For every possible world, if α is true make sure that is β true too
 OK for propositional logic (finitely many worlds); not easy for first-order logic

 Method 2: theorem-proving
 Search for a sequence of proof steps (applications of inference rules) leading

from α to β
 E.g., from P ∧ (P ⇒ Q), infer Q by Modus Ponens

 Sound algorithm: everything it claims to prove is in fact entailed
 Complete algorithm: every that is entailed can be proved

Quiz

 What’s the connection between complete inference algorithms and
complete search algorithms?

 Answer 1: they both have the words “complete…algorithm”
 Answer 2: they both solve any solvable problem
 Answer 3: Formulate inference as a search problem
 Initial state: KB contains α
 Actions: apply any inference rule that matches KB, add conclusion
 Goal test: KB contains β

Hence any complete search algorithm (BFS, IDS, …) yields a complete
inference algorithm…
provided the inference rules themselves are strong enough

Propositional logic syntax: The gruesome details

 Given: a set of proposition symbols {X1,X2,…, Xn}
 (we often add True and False for convenience)

 Xi is a sentence
 If α is a sentence then ¬α is a sentence
 If α and β are sentences then α ∧ β is a sentence
 If α and β are sentences then α ∨ β is a sentence
 If α and β are sentences then α⇒ β is a sentence
 If α and β are sentences then α⇔ β is a sentence
 And p.s. there are no other sentences!

Propositional logic semantics: The unvarnished truth

function PL-TRUE?(α,model) returns true or false
if α is a symbol then return Lookup(α, model)
if Op(α) = ¬ then return not(PL-TRUE?(Arg1(α),model))
if Op(α) = ∧ then return and(PL-TRUE?(Arg1(α),model),

PL-TRUE?(Arg2(α),model))
if Op(α) = ⇒ then return or(PL-TRUE?(Arg1(α),model),

not(PL-TRUE?(Arg2(α),model)))
etc. (Sometimes called “recursion over syntax”)

PacMan facts

 If Pacman is at 3,3 at time 16 and goes North and there is no wall
at 3,4 then Pacman is at 3,4 at time 17:
 At_3,3_16 ∧ N_16 ∧ ¬Wall_3,4 ⇒ At_3,3_17

 At time 0 Pacman does one of four actions:
 (W_0 v E_0 v N_0 v S_0)
 ¬(W_0 ∧ E_0) ∧ ¬(W_0 ∧ S_0) ∧ …

Simple theorem proving: Forward chaining

 Forward chaining applies Modus Ponens to generate new facts:
 Given X1 ∧ X2 ∧ … Xn ⇒ Y and X1, X2, …, Xn

 Infer Y

 Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added
 Requires KB to contain only definite clauses:
 (Conjunction of symbols) ⇒ symbol; or
 A single symbol (note that X is equivalent to True ⇒ X)

Forward chaining algorithm

function PL-FC-ENTAILS?(KB, q) returns true or false
count ← a table, where count[c] is the number of symbols in c’s premise
inferred ← a table, where inferred[s] is initially false for all s
agenda ← a queue of symbols, initially symbols known to be true in KB
while agenda is not empty do

p ← Pop(agenda)
if p = q then return true
if inferred[p] = false then

inferred[p]←true
for each clause c in KB where p is in c.premise do

decrement count[c]
if count[c] = 0 then add c.conclusion to agenda

return false

Forward chaining example: Proving Q

 P ⇒ Q
 L ∧ M ⇒ P
 B ∧ L ⇒ M
 A ∧ P ⇒ L
 A ∧ B ⇒ L
 A
 B

1
2
2
2
2
0
0

A false
B false
L false
M false
P false
Q false

CLAUSES

AGENDA

A B

INFERREDCOUNT

Lx

xxxx true

// 1
// 1

x

xxxx true

// 1

// 0

x

xxxx true
// 1

// 0

Mx

xxxx true

// 0

Px

xxxx true

// 0

// 0

L Qx x

xxxx true

Properties of forward chaining

 Theorem: FC is sound and complete for definite-clause KBs
 Soundness: follows from soundness of Modus Ponens (easy to check)
 Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final inferred table as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause a1∧... ∧ak ⇒ b is false in m
Then a1∧... ∧ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB
5. If KB |= q, q is true in every model of KB, including m

A false
B false
L false
M false
P false
Q false

xxxx true
xxxx true
xxxx true
xxxx true
xxxx true
xxxx true

Simple model checking

function TT-ENTAILS?(KB, α) returns true or false
return TT-CHECK-ALL(KB,α,symbols(KB) U symbols(α),{})

function TT-CHECK-ALL(KB,α,symbols,model) returns true or false
if empty?(symbols) then

if PL-TRUE?(KB,model) then return PL-TRUE?(α,model)
else return true

else
P ← first(symbols)
rest ← rest(symbols)
return and (TT-CHECK-ALL(KB,α,rest,model ∪ {P = true})

TT-CHECK-ALL(KB,α,rest,model ∪ {P = false }))

Simple model checking, contd.

 Same recursion as backtracking
 O(2n) time, linear space
 We can do much better!

P1=true P1=false

P2=true P2=false

Pn=falsePn=true

11
11

1…
1

00
00

…
0

KB?
α?

Satisfiability and entailment

 A sentence is satisfiable if it is true in at least one world (cf CSPs!)
 Suppose we have a hyper-efficient SAT solver; how can we use it

to test entailment?
 Suppose α |= β
 Then α⇒ β is true in all worlds
 Hence ¬(α⇒ β) is false in all worlds
 Hence α ∧ ¬β is false in all worlds, i.e., unsatisfiable

 So, add the negated conclusion to what you know, test for
(un)satisfiability; also known as reductio ad absurdum

 Efficient SAT solvers operate on conjunctive normal form

Conjunctive normal form (CNF)

 Every sentence can be expressed as a conjunction of clauses
 Each clause is a disjunction of literals
 Each literal is a symbol or a negated symbol
 Conversion to CNF by a sequence of standard transformations:
 At_1,1_0 ⇒ (Wall_0,1 ⇔ Blocked_W_0)
 At_1,1_0 ⇒ ((Wall_0,1 ⇒ Blocked_W_0) ∧ (Blocked_W_0 ⇒Wall_0,1))
 ¬At_1,1_0 v ((¬Wall_0,1 v Blocked_W_0) ∧ (¬Blocked_W_0 v Wall_0,1))
 (¬At_1,1_0 v ¬Wall_0,1 v Blocked_W_0) ∧

(¬At_1,1_0 v ¬Blocked_W_0 v Wall_0,1)

Replace biconditional by two implications

Replace α ⇒ β by ¬α v β

Distribute v over ∧

Efficient SAT solvers

 DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern solvers
 Essentially a backtracking search over models with some extras:
 Early termination: stop if
 all clauses are satisfied; e.g., (A ∨ B) ∧ (A ∨ ¬C) is satisfied by {A=true}
 any clause is falsified; e.g., (A ∨ B) ∧ (A ∨ ¬C) is satisfied by {A=false,B=false}

 Pure literals: if all occurrences of a symbol in as-yet-unsatisfied clauses have
the same sign, then give the symbol that value
 E.g., A is pure and positive in (A ∨ B) ∧ (A ∨ ¬C) ∧ (C ∨ ¬B) so set it to true

 Unit clauses: if a clause is left with a single literal, set symbol to satisfy clause
 E.g., if A=false, (A ∨ B) ∧ (A ∨ ¬C) becomes (false ∨ B) ∧ (false ∨ ¬C), i.e. (B) ∧ (¬C)
 Satisfying the unit clauses often leads to further propagation, new unit clauses, etc.

DPLL algorithm

function DPLL(clauses,symbols,model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P,value ←FIND-PURE-SYMBOL(symbols,clauses,model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})
P,value ←FIND-UNIT-CLAUSE(clauses,model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})
P ← First(symbols); rest ← Rest(symbols)
return or(DPLL(clauses,rest,model∪{P=true}),

DPLL(clauses,rest,model∪{P=false}))

Efficiency

 Naïve implementation of DPLL: solve ~100 variables
 Extras:
 Variable and value ordering (from CSPs)
 Divide and conquer
 Caching unsolvable subcases as extra clauses to avoid redoing them
 Cool indexing and incremental recomputation tricks so that every step of the

DPLL algorithm is efficient (typially O(1))
 Index of clauses in which each variable appears +ve/-ve
 Keep track number of satisfied clauses, update when variables assigned
 Keep track of number of remaining literals in each clause

 Real implementation of DPLL: solve ~10000000 variables

SAT solvers in practice

 Circuit verification: does this VLSI circuit compute the right answer?
 Software verification: does this program compute the right answer?
 Software synthesis: what program computes the right answer?
 Protocol verification: can this security protocol be broken?
 Protocol synthesis: what protocol is secure for this task?
 Planning: how can I eat all the dots???

A knowledge-based agent

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, an integer, initially 0
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action ← ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t←t+1
return action

Example: Partially observable Pacman
 Pacman has to act given only local perception
 Four Boolean percept variables for wall in each direction

 What knowledge does he need to begin with?
 Sensor model: sentences stating how the current percept

variables are determined by the current state variables
 Transition model: sentences stating how the next-state

variables are determined by the current state variables and
Pacman’s action
 Initial conditions: what Pacman knows about the initial

state
 Domain constraints: what is generally true, e.g., Pacman can

do one thing at a time and be in one place at a time

Pacman variables

 Pacman’s location
 At_1,1_0 (Pacman is at [1,1] at time 0) At_3,3_4 etc

 Wall locations (these do not change with time)
 Wall_0,0 Wall_0,1 etc

 Percepts
 Blocked_W_0 (blocked by wall to my West at time 0) etc.

 Actions
 W_0 (Pacman moves West at time 0), E_0 etc.

 NxN world for T time steps => N2T + N2 + 4T + 4T = O(N2T) variables
 2N2T possible worlds! N=10, T=100 => 103010 worlds (each a “history”)

Sensor model

 State facts about how Pacman’s percepts arise…
 Pacman perceives a wall to the West at time t

if and only if he is in x,y and there is a wall at x-1,y ….
 Blocked_W_0 ⇔

((At_1,1_0 ∧ Wall_0,1) v
(At_1,2_0 ∧ Wall_0,2) v
(At_1,3_0 ∧ Wall_0,3) v ….)

How many of these sentences? How big are they?

Quiz

 What is wrong with sentences like
 At_1,1_0 ∧ Wall_0,1 ⇒ Blocked_W_0
 If you are at [1,1] at time 0 and there is a wall in [0,1], the west percept is blocked

 True but incomplete!
 They say “under these conditions the percept variable is true”
 They don’t say when it is false
 In particular, they allow for worlds where the percept is always true!!
 Unintended or non-standard models

Transition model

 How does each state variable or fluent at each time gets its value?
 State variables for POPacman are At_x,y_t , e.g., At_3,3_17
 A state variable gets its value according to a successor-state axiom
 Xt ⇔ [Xt-1 ∧ ¬(some actiont-1 made it false)] v

[¬Xt-1 ∧ (some actiont-1 made it true)]

 For Pacman location:
 At_3,3_17 ⇔ [At_3,3_16 ∧ ¬((¬Wall_3,4 ∧ N_16) v (¬Wall_4,3 ∧ E_16) v …)]

v [¬At_3,3_16 ∧ ((At_3,2_16 ∧ ¬Wall_3,3 ∧ N_16) v
(At_2,3_16 ∧ ¬Wall_3,3 ∧ N_16) v …)]

Initial state

 Pacman may know its initial location:
 At_1,1_0

 Or, it may not:
 At_1,1_0 v At_1,2_0 v At_1,3_0 v … v At_3,3_0

 We also need a domain constraint – exactly one thing at a time
 ¬(W_0 ∧ E_0) ∧ ¬(W_0 ∧ S_0) ∧ …
 ¬(W_1 ∧ E_1) ∧ ¬(W_1 ∧ S_1) ∧ …
 … ∧ (W_0 v E_0 v N_0 v S_0) ∧ …

∧ ¬At_1,2_0 ∧ ¬At_1,3_0 ….

State estimation

 State estimation means keeping track of what’s true now
 A logical agent can just ask itself!
 E.g., ask whether KB ∧ <actions> ∧ <percepts> |= Wall_2,2
 This is “lazy”: it involves reasoning about one’s whole life history at each step!

 A more “eager” form of state estimation:
 After each action and percept
 For each state variable Xt

 If Xt is entailed, add to KB
 If ¬Xt is entailed, add to KB

Planning as satisfiability

 Given a hyper-efficient SAT solver, can we use it to make plans?
 Yes, for fully observable, deterministic case:
 planning problem is solvable iff there is some satisfying assignment
 solution obtained from truth values of action variables

 For T = 1 to infinity, set up the KB as follows and run SAT solver:
 Initial state, domain constraints
 Transition model sentences up to time T
 Goal is true at time T

 Read off action variables from solution

Summary

 One possible agent architecture: knowledge + inference
 Logics provide a formal way to encode knowledge
 A logic is defined by: syntax, set of possible worlds, truth condition

 Logical inference computes entailment relations among sentences
 SAT solvers based on DPLL provide incredibly efficient inference
 Logical agents can construct plans by asking whether there is a

future in which the goal is achieved

	CS 188: Artificial Intelligence�
	Slide Number 2
	Knowledge
	Logic
	Examples
	Inference: entailment
	Inference: proofs
	Quiz
	Propositional logic syntax: The gruesome details
	Propositional logic semantics: The unvarnished truth
	PacMan facts
	Simple theorem proving: Forward chaining
	Forward chaining algorithm
	Forward chaining example: Proving Q
	Properties of forward chaining
	Simple model checking
	Simple model checking, contd.
	Satisfiability and entailment
	Conjunctive normal form (CNF)
	Efficient SAT solvers
	DPLL algorithm
	Efficiency
	SAT solvers in practice
	A knowledge-based agent
	Example: Partially observable Pacman
	Pacman variables
	Sensor model
	Quiz
	Transition model
	Initial state
	State estimation
	Planning as satisfiability
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Summary

