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Spectrum of representations

Search, 
game-playing

CSPs, planning,
propositional logic, 
Bayes nets, neural nets

First-order logic, 
databases,
probabilistic programs



Expressive power

 Rules of chess:
 100,000 pages in propositional logic
 1 page in first-order logic

 Rules of pacman:
 ∀x,y,t At(x,y,t) ⇔ [At(x,y,t-1) ∧ ¬∃ u,v Reachable(x,y,u,v,Action(t-1))]  v 

[∃ u,v At(u,v,t-1) ∧ Reachable(x,y,u,v,Action(t-1))]



Possible worlds

 A possible world for FOL consists of:
 A non-empty set of objects
 For each k-ary predicate in the language, a set of 

k-tuples of objects (i.e., the set of tuples of 
objects that satisfy the predicate in this world)

 For each k-ary function in the language, a 
mapping from k-tuples of objects to objects

 For each constant symbol, a particular object 
(can think of constants as 0-ary functions)

Knows(A, BFF(B))
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Syntax and semantics: Terms

 A term refers to an object; it can be
 A constant symbol, e.g., A , B, EvilKingJohn
 The possible world fixes these referents

 A function symbol with terms as 
arguments, e.g., BFF(EvilKingJohn)
 The possible world specifies the value of the 

function, given the referents of the terms
 BFF(EvilKingJohn) -> BFF(2) -> 3

 A logical variable, e.g., x
 (more later)

A     B     EvilKingJohn
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Syntax and semantics: Atomic sentences

 An atomic sentence is an elementary  
proposition (cf symbols in PL)
 A predicate symbol with terms as arguments,       

e.g., Knows(A,BFF(B))
 True iff the objects referred to by the terms are                  

in the relation referred to by the predicate
 Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F

 An equality between terms, e.g., BFF(BFF(BFF(B)))=B
 True iff the terms refer to the same objects
 BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2

-> BFF(1)=2 -> 2=2 -> T
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1

2
3



Syntax and semantics: Complex sentences

 Sentences with logical connectives        
¬α, α ∧ β, α ∨ β, α⇒ β, α⇔ β
 Sentences with universal or existential 

quantifiers, e.g.,
 ∀x Knows(x,BFF(x))
 True in world w iff true in all extensions of w 

where x refers to an object in w
 x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
 x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
 x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F
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Fun with sentences

 Everyone knows President Obama

 There is someone that everyone knows

 Everyone knows someone



More fun with sentences

 Any two people of the same nationality speak a common language



Inference in FOL

 Entailment is defined exactly as for PL: 
 α |= β (“α entails β” or “β follows from α”) iff in every world where α is true, β is 

also true
 E.g., ∀x Knows(x,Obama) entails ∃y∀x Knows(x,y)

 If asked “Do you know what time it is?”, it’s rude to say “Yes”
 Similarly, given an existentially quantified query, it’s polite to provide an 

answer in the form of a substitution (or binding) for the variable(s):
 KB = ∀x Knows(x,Obama) 
 Query = ∃y∀x Knows(x,y) 
 Answer = Yes, {y/Obama}

 Applying the substitution should produce a sentence that is entailed by KB



Inference in FOL: Propositionalization

 Convert (KB ∧ ¬α) to PL, use a PL SAT solver to check (un)satisfiability
 Trick: replace variables with ground terms, convert atomic sentences to symbols

 ∀x Knows(x,Obama) and Democrat(Feinstein) 
 Knows(Obama,Obama) and Knows(Feinstein,Obama) and Democrat(Feinstein) 
 K_O_O ∧ K_F_O ∧ D_F

 and ∀x Knows(Mother(x),x)
 Knows(Obama,Obama) and Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Obama) …….

 Real trick: for k = 1 to infinity, use terms of function nesting depth k
 If entailed, will find a contradiction for some finite k; if not, may continue for ever; 

semidecidable



Inference in FOL: Lifted inference

 Apply inference rules directly to first-order sentences, e.g.,
 KB = Person(Socrates), ∀x Person(x) ⇒ Mortal(x)
 conclude Mortal(Socrates)
 The general rule is a version of Modus Ponens:
 Given α[x] ⇒β[x] and α’, where α’σ = α[x]σ for some substitution σ conclude  β[x] σ

 σ is {x/Socrates}

 Given Knows(x,Obama) and Knows(y,z) ⇒ Likes(y,z)
 σ is {y/x, z/Obama}, conclude Likes(x,Obama) 

 Examples: Prolog (backward chaining), Datalog (forward chaining), 
production rule systems (forward chaining), resolution theorem provers



Summary, pointers

 FOL is a very expressive formal language
 Many domains of common-sense and technical knowledge can be 

written in FOL (see AIMA Ch. 12)
 circuits, software, planning, law, network and security protocols, product 

descriptions, ecommerce transactions, geographical information systems, 
Google Knowledge Graph, Semantic Web, etc.

 Inference is semidecidable in general; many problems are 
efficiently solvable in practice
 Inference technology for logic programming is especially efficient 

(see AIMA Ch. 9)
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