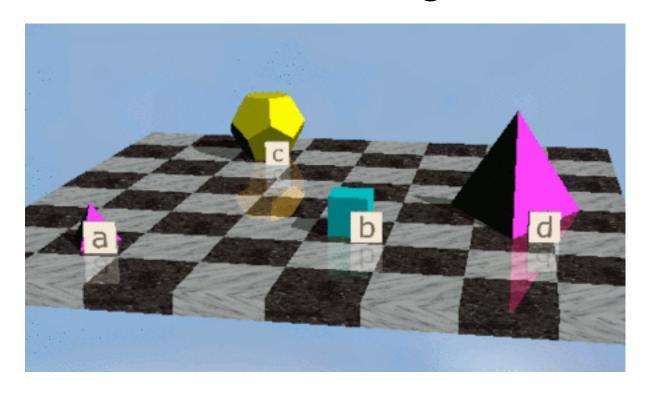


CS 188: Artificial Intelligence

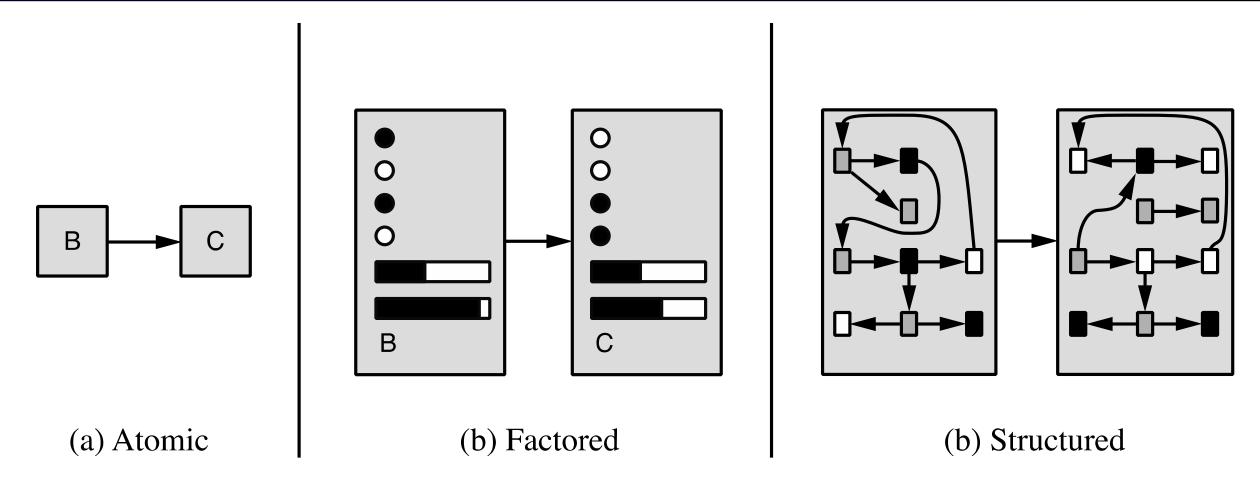
First-Order Logic



Instructor: Stuart Russell

University of California, Berkeley

Spectrum of representations



Search, game-playing

CSPs, planning, propositional logic, Bayes nets, neural nets

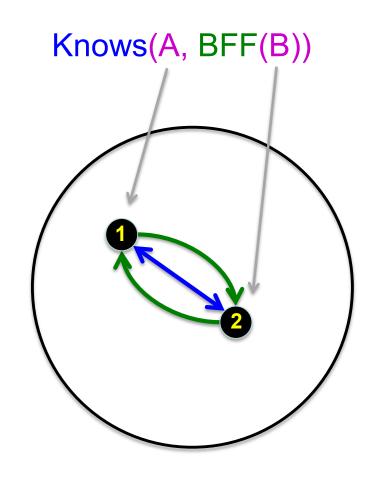
First-order logic, databases, probabilistic programs

Expressive power

- Rules of chess:
 - 100,000 pages in propositional logic
 - 1 page in first-order logic
- Rules of pacman:
 - \forall x,y,t At(x,y,t) \Leftrightarrow [At(x,y,t-1) $\land \neg \exists$ u,v Reachable(x,y,u,v,Action(t-1))] v [\exists u,v At(u,v,t-1) \land Reachable(x,y,u,v,Action(t-1))]

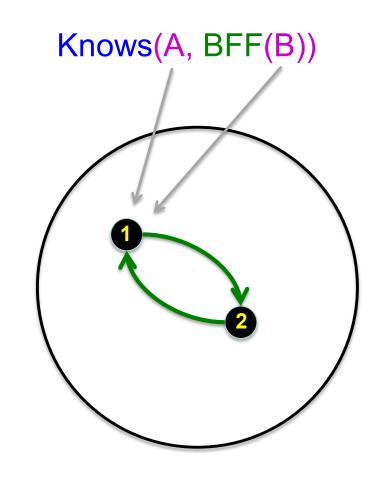
Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)



Possible worlds

- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)



Possible worlds

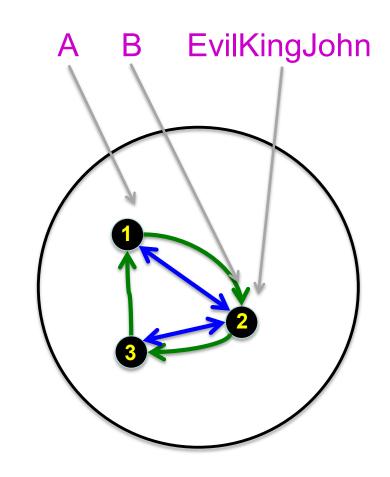
- A possible world for FOL consists of:
 - A non-empty set of objects
 - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
 - For each k-ary function in the language, a mapping from k-tuples of objects to objects
 - For each constant symbol, a particular object (can think of constants as 0-ary functions)

Knows(A, BFF(B))

How many possible worlds?

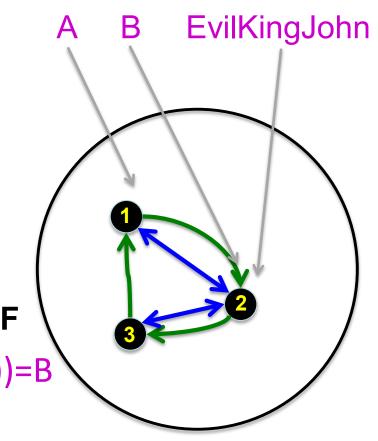
Syntax and semantics: Terms

- A term refers to an object; it can be
 - A constant symbol, e.g., A , B, EvilKingJohn
 - The possible world fixes these referents
 - A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
 - The possible world specifies the value of the function, given the referents of the terms
 - BFF(EvilKingJohn) -> BFF(2) -> 3
 - A logical variable, e.g., x
 - (more later)



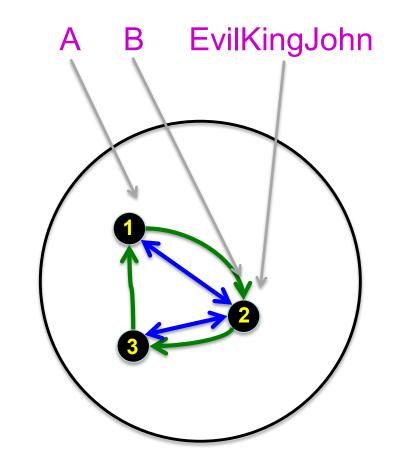
Syntax and semantics: Atomic sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
 - A predicate symbol with terms as arguments,
 e.g., Knows(A,BFF(B))
 - True iff the objects referred to by the terms are in the relation referred to by the predicate
 - Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F
 - An equality between terms, e.g., BFF(BFF(B)))=B
 - True iff the terms refer to the same objects
 - BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2
 -> BFF(1)=2 -> 2=2 -> T



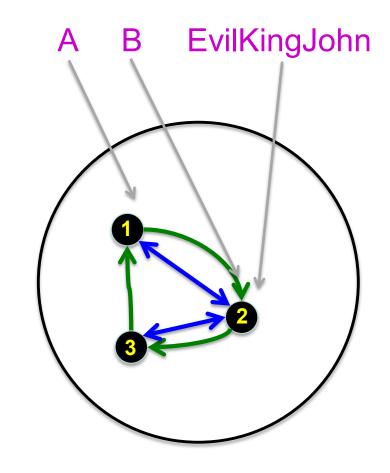
Syntax and semantics: Complex sentences

- Sentences with logical connectives $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
 - $\forall x \text{ Knows}(x,BFF(x))$
 - True in world w iff true in all extensions of w where x refers to an object in w
 - x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
 - x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
 - x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F



Syntax and semantics: Complex sentences

- Sentences with logical connectives $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
 - $\exists x \text{ Knows}(x,BFF(x))$
 - True in world w iff true in some extension of w where x refers to an object in w
 - x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
 - x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
 - x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F



Fun with sentences

Everyone knows President Obama

There is someone that everyone knows

Everyone knows someone

More fun with sentences

Any two people of the same nationality speak a common language

Inference in FOL

- Entailment is defined exactly as for PL:
 - $\alpha \models \beta$ ("α entails β" or "β follows from α") iff in every world where α is true, β is also true
 - E.g., $\forall x \text{ Knows}(x, \text{Obama}) \text{ entails } \exists y \forall x \text{ Knows}(x, y)$
- If asked "Do you know what time it is?", it's rude to say "Yes"
- Similarly, given an existentially quantified query, it's polite to provide an answer in the form of a *substitution* (or *binding*) for the variable(s):
 - KB = \forall x Knows(x,Obama)
 - Query = $\exists y \forall x \text{ Knows}(x,y)$
 - Answer = Yes, {y/Obama}
- Applying the substitution should produce a sentence that is entailed by KB

Inference in FOL: Propositionalization

- Convert (KB $\wedge \neg \alpha$) to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - ▼x Knows(x,Obama) and Democrat(Feinstein)
 - Knows(Obama, Obama) and Knows(Feinstein, Obama) and Democrat(Feinstein)
 - K_O_O ∧ K_F_O ∧ D_F
 - and $\forall x \text{ Knows}(\text{Mother}(x),x)$
 - Knows(Obama,Obama) and Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Obama)
 - Real trick: for k = 1 to infinity, use terms of function nesting depth k
 - If entailed, will find a contradiction for some finite k; if not, may continue for ever; semidecidable

Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
 - KB = Person(Socrates), $\forall x \text{ Person}(x) \Rightarrow \text{Mortal}(x)$
 - conclude Mortal(Socrates)
 - The general rule is a version of Modus Ponens:
 - Given $\alpha[x] \Rightarrow \beta[x]$ and α' , where $\alpha'\sigma = \alpha[x]\sigma$ for some substitution σ conclude $\beta[x]\sigma$ ■ σ is $\{x/Socrates\}$
 - Given Knows(x,Obama) and Knows(y,z) ⇒ Likes(y,z)
 - σ is {y/x, z/Obama}, conclude Likes(x,Obama)
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers

Summary, pointers

- FOL is a very expressive formal language
- Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 12)
 - circuits, software, planning, law, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.
- Inference is semidecidable in general; many problems are efficiently solvable in practice
- Inference technology for logic programming is especially efficient (see AIMA Ch. 9)