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 A probability model specifies a probability for every possible world
 Typically, possible worlds are defined by assignments to a set of variables 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛
 In that case, the probability model is a joint distribution 𝑃𝑃(𝑋𝑋1, … , 𝑋𝑋𝑛𝑛)
 Written as a table, this would be exponential in 𝑛𝑛

 Independence: joint distribution = product of marginal distributions
 𝑃𝑃 𝑥𝑥,𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦) or 𝑃𝑃 𝑥𝑥 = 𝑃𝑃 𝑥𝑥 𝑦𝑦)
 E.g.,  probability model for 𝑛𝑛 coins represented by 𝑛𝑛 numbers instead of 2𝑛𝑛

 Independence is rare in practice: within a domain, most variables correlated

 Conditional independence is much more common:
 Toothache and Catch are conditionally independent given Cavity
 Traffic and Umbrella are conditionally independent given Rain
 Alarm and Fire are conditionally independent given Smoke
 Reading1 and Reading2 are conditionally independent given Ghost location
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Ghostbusters, Revisited

 What about two readings? What is    
P(r1,r2 | g) ?

 Readings are conditionally independent 
given the ghost location!

 P(r1,r2 | g) = P(r1 | g) P(r2 | g)
 Applying Bayes’ rule in full:
 P(g | r1,r2 )  α P(r1,r2 | g) P(g) 

= P(g) P(r1 | g) P(r2 | g) 
 Bayesian updating using low-dimensional 

conditional distributions!!
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Bayes Nets: Big Picture



Bayes Nets: Big Picture

 Bayes nets: a technique for describing              
complex joint distributions (models) using         
simple, local distributions (conditional probabilities)
 A subset of the general class of graphical models

 Take advantage of local causality: 
 the world is composed of many variables, 
 each interacting locally with a few others

 For about 10 min, we’ll be vague about how these 
interactions are specified



Graphical Model Notation

 Nodes: variables (with domains)
 Can be assigned (observed) or unassigned 

(unobserved)

 Arcs: interactions
 Similar to CSP constraints
 Indicate “direct influence” between variables
 Formally: encode conditional independence 

(more later)

 For now: imagine that arrows mean 
direct causation (in general, they don’t!)



Example: Coin Flips

 N independent coin flips

 No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic

 Variables:
 T: There is traffic
 U: I’m holding my umbrella
 R: It rains

U

R

T



Example: Smoke alarm

 Variables:
 F: There is fire
 S: There is smoke
 A: Alarm sounds

F

S

A



Example: Ghostbusters

Ghost

R1
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Example Bayes’ Net: Insurance



Example Bayes’ Net: Car



 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Can we build it?



Can we build it?

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Bayes Net Syntax and Semantics



Bayes Net Syntax
 A set of nodes, one per variable Xi

 A directed, acyclic graph

 A conditional distribution for each node 
given its parent variables in the graph

 CPT: conditional probability table: each row is a 
distribution for child given a configuration of its 
parents

 Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Ghost P(Color1,1 | Ghost)

g y o r

(1,1) 0.01 0.1 0.3 0.59

(1,2) 0.1 0.3 0.5 0.1

(1,3) 0.3 0.5 0.19 0.01

…

Ghost

Color1,1 Color1,2 Color

P(Ghost)
(1,1) (1,2) (1,3) …

0.11 0.11 0.11 …



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

Number of free parameters in 
each CPT:

Parent domain sizes d1,…,dk

Child domain size d 
Each table row must sum to 1

(d-1) Πi di

1 1

4

2 2



General formula for sparse BNs

 Suppose
 n variables
 Maximum domain size is d
 Maximum number of parents is k

 Full joint distribution has size O(dn)
 Bayes net has size O(n .dk)
 Linear scaling with n as long as causal structure is local
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Bayes net global semantics

 Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  ∏i P(Xi | Parents(Xi))



P(B)

true false

0.001 0.999

Example
P(b,¬e, a, ¬j, ¬m) =

20

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(b) P(¬e) P(a|b,¬e) P(¬j|a) P(¬m|a) 

=.001x.998x.94x.1x.3=.000028 



Probabilities in BNs

 Why are we guaranteed that setting 
P(X1,..,Xn)  =  ∏i P(Xi | Parents(Xi))

results in a proper joint distribution?  

 Chain rule (valid for all distributions):   P(X1,..,Xn)  =  ∏i P(Xi | X1,…,Xi-1)

 Assume conditional independences: P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))
 When adding node Xi, ensure parents “shield” it from other predecessors

 Consequence:  P(X1,..,Xn)  =  ∏i P(Xi | Parents(Xi))

 So the topology implies that certain conditional independencies hold



Example: Burglary

 Burglary
 Earthquake
 Alarm
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Burglary Earthquake

Alarm

?

??

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

P(E)

true false

0.002 0.998



Example: Burglary

 Alarm
 Burglary
 Earthquake
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Burglary Earthquake

Alarm

?

?

?

P(A)

true false

A B P(E|A,B)

true false

true true

true false

false true

false false

A P(B|A)

true false

true

false

? ?



Causality?

 When Bayes nets reflect the true causal patterns:
 Often simpler (fewer parents, fewer parameters)
 Often easier to assess probabilities
 Often more robust: e.g., changes in frequency of 

burglaries should not affect the rest of the model!

 BNs need not actually be causal
 Sometimes no causal net exists over the domain 

(especially if variables are missing)
 E.g. consider the variables Traffic and Umbrella
 End up with arrows that reflect correlation, not causation

 What do the arrows really mean?
 Topology may happen to encode causal structure
 Topology really encodes conditional independence:     

P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))



Conditional independence semantics

 Every variable is conditionally independent of its non-descendants given its parents
 Conditional independence semantics <=> global semantics
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Example

 JohnCalls independent of Burglary given Alarm?
 Yes

 JohnCalls independent of MaryCalls given Alarm?
 Yes

 Burglary independent of Earthquake?
 Yes

 Burglary independent of Earthquake given Alarm?
 NO!
 Given that the alarm has sounded, both burglary and 

earthquake become more likely
 But if we then learn that a burglary has happened, the 

alarm is explained away and the probability of 
earthquake drops back 

26

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

V-structure



Markov blanket

 A variable’s Markov blanket consists of parents, children, children’s other parents
 Every variable is conditionally independent of all other variables given its Markov blanket
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Bayes Nets

 So far: how a Bayes net encodes a joint 
distribution

 Next: how to answer queries, i.e., compute 
conditional probabilities of queries given evidence
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