Announcements

- Midterm: Wednesday 7pm-9pm
 - See midterm prep page (posted on Piazza, inst.eecs page)
 - Four rooms; your room determined by *last two digits of your SID*:
 - 00-32: Dwinelle 155
 - 33-45: Genetics and Plant Biology 100
 - 46-62: Hearst Annex A1
 - 63-99: Pimentel 1
 - Discussions this week <u>by topic</u>
- Survey: complete it before midterm; 80% participation = +1pt

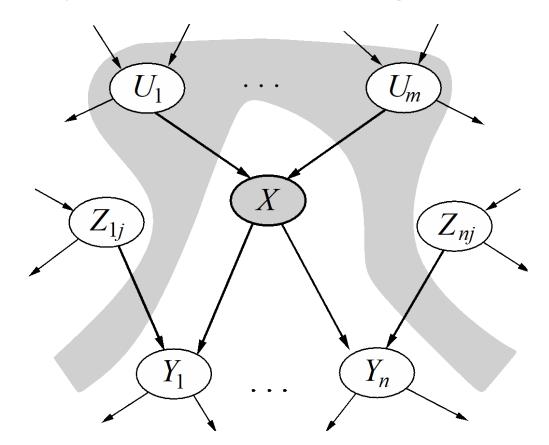
Bayes net global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

Conditional independence semantics

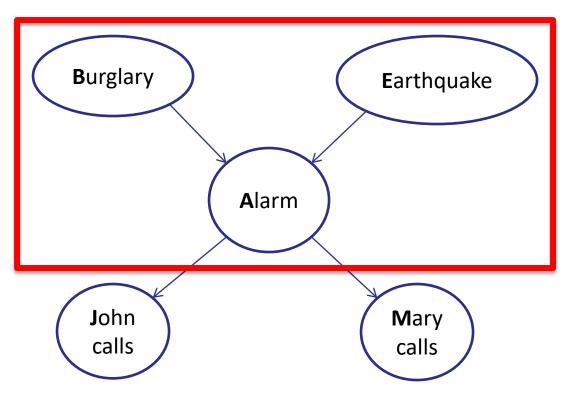
- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics



Example

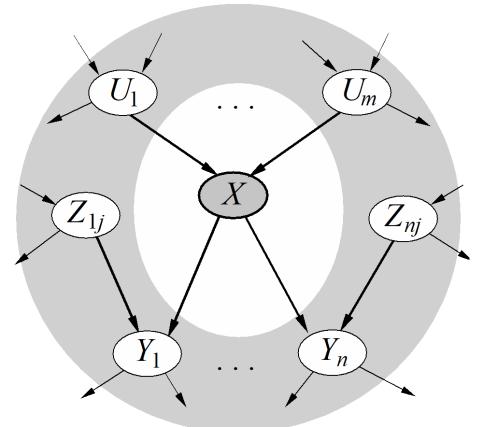
- JohnCalls independent of Burglary given Alarm?
 - Yes
- JohnCalls independent of MaryCalls given Alarm?
 - Yes
- Burglary independent of Earthquake?
 - Yes
- Burglary independent of Earthquake given Alarm?
 - NO!
 - Given that the alarm has sounded, both burglary and earthquake become more likely
 - But if we then learn that a burglary has happened, the alarm is explained away and the probability of earthquake drops back

V-structure



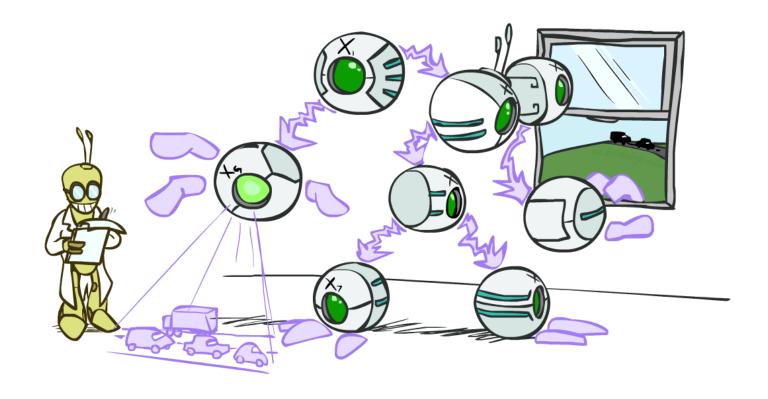
Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket



CS 188: Artificial Intelligence

Bayes Nets: Exact Inference



Instructor: Sergey Levine and Stuart Russell--- University of California, Berkeley

Bayes Nets

✓ Part I: Representation

Part II: Exact inference

- Enumeration (always exponential complexity)
- Variable elimination (worst-case exponential complexity, often better)
- Inference is NP-hard in general

Part III: Approximate Inference

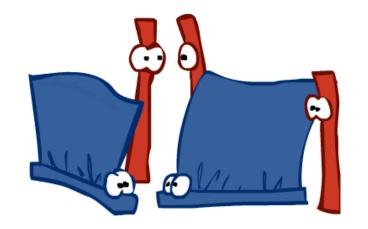
Later: Learning Bayes nets from data

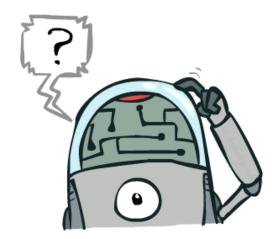
Inference

 Inference: calculating some useful quantity from a probability model (joint probability distribution)

Examples:

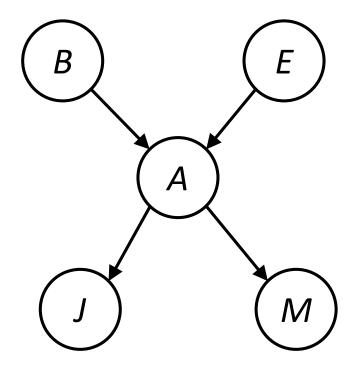
- Posterior marginal probability
 - $P(Q|e_1,...,e_k)$
 - E.g., what disease might I have?
- Most likely explanation:
 - $\operatorname{argmax}_{q,r,s} P(Q=q,R=r,S=s | e_1,...,e_k)$
 - E.g., what did he say?





Inference by Enumeration in Bayes Net

- Reminder of inference by enumeration:
 - Any probability of interest can be computed by summing entries from the joint distribution
 - Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities
- P(B | j, m) = α P(B, j, m)
 = α ∑_{e,a} P(B, e, a, j, m)
 = α ∑_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)
- So inference in Bayes nets means computing sums of products of numbers: sounds easy!!
- Problem: sums of exponentially many products!



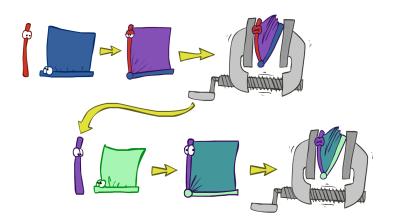
Can we do better?

- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds
- $= P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(\neg e)P(a|B,\neg e)P(j|a)P(m|a)$
 - + $P(B)P(e)P(\neg a | B,e)P(j | \neg a)P(m | \neg a) + P(B)P(\neg e)P(\neg a | B, \neg e)P(j | \neg a)P(m | \neg a)$

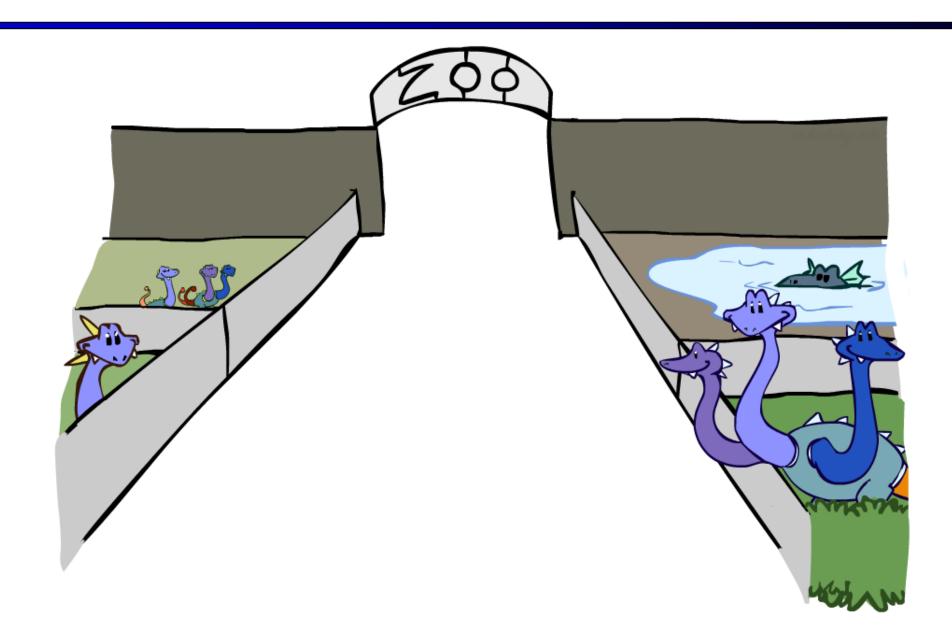
Lots of repeated subexpressions!

Variable elimination: The basic ideas

- Move summations inwards as far as possible
 - $P(B | j, m) = \alpha \sum_{e,a} P(B) P(e) P(a | B,e) P(j | a) P(m | a)$
 - $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a)$
- Do the calculation from the inside out
 - I.e., sum over *a* first, then sum over *e*
 - Problem: P(a|B,e) isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions)
 with appropriate operations on them; these are called factors



Factor Zoo



Factor Zoo I

Joint distribution: P(X,Y)

- Entries P(x,y) for all x, y
- |X|x|Y| matrix
- Sums to 1

Projected joint: P(x,Y)

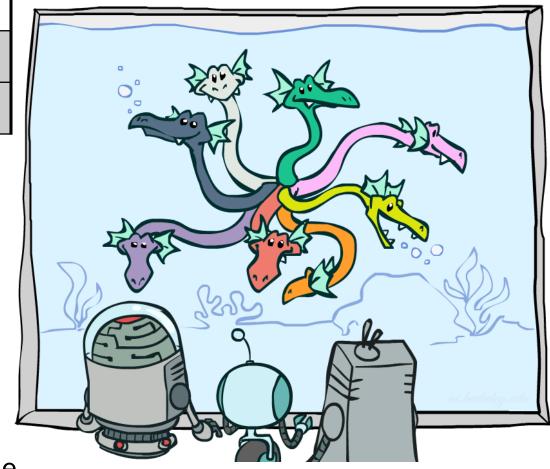
- A slice of the joint distribution
- Entries P(x,y) for one x, all y
- |Y|-element vector
- Sums to P(x)

P(A,J)

A \ J	true	false
true	0.09	0.01
false	0.045	0.855

P(a,J)

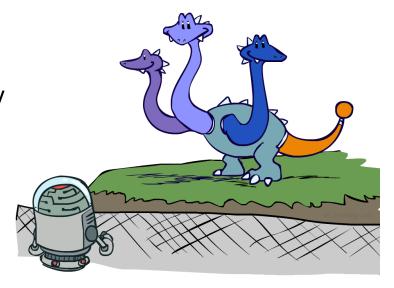
A\J	true	false
true	0.09	0.01



Number of variables (capitals) = dimensionality of the table

Factor Zoo II

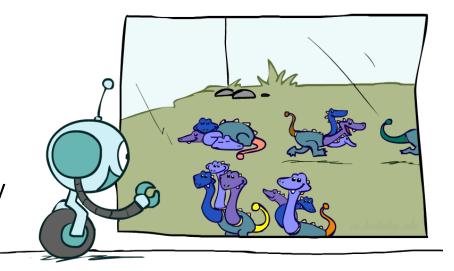
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1



P(J|a)

A\J	true	false
true	0.9	0.1

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|

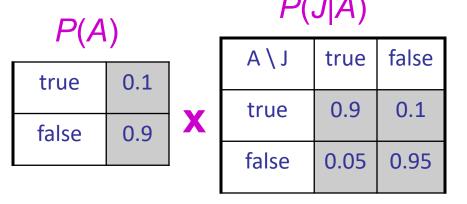


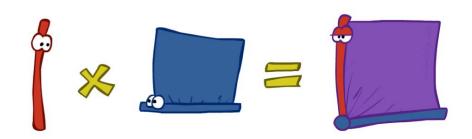
P(J|A)

A\J	true	false
true	0.9	0.1
false	0.05	0.95

Operation 1: Pointwise product

- First basic operation: pointwise product of factors (similar to a database join, not matrix multiply!)
 - New factor has union of variables of the two original factors
 - Each entry is the product of the corresponding entries from the original factors
- Example: $P(J|A) \times P(A) = P(A,J)$

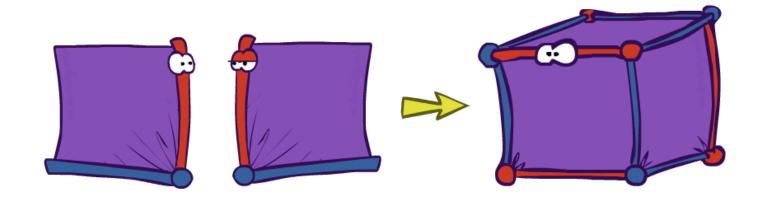




D	<i>(</i> Λ		/
1	(\frown)	, 0	

A\J	true	false
true	0.09	0.01
false	0.045	0.855

Example: Making larger factors



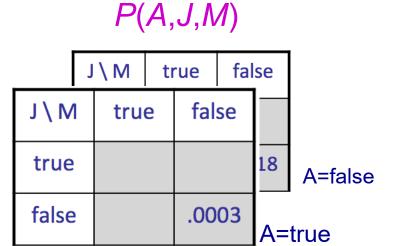
• Example: $P(A,J) \times P(A,M) = P(A,J,M)$

D	/ /		Λ
	M	,∪	•

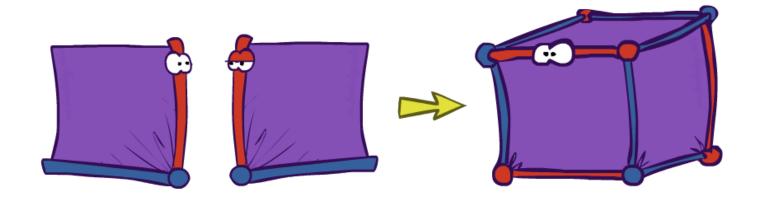
A \ J	true	false
true	0.09	0.01
false	0.045	0.855

P(A,M)

A\M	true	false
true	0.07	0.03
false	0.009	0.891



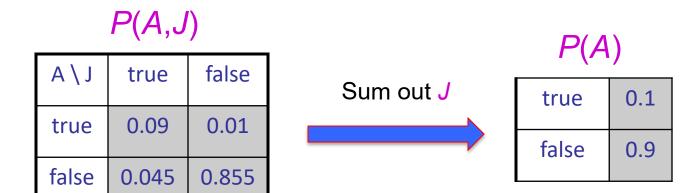
Example: Making larger factors

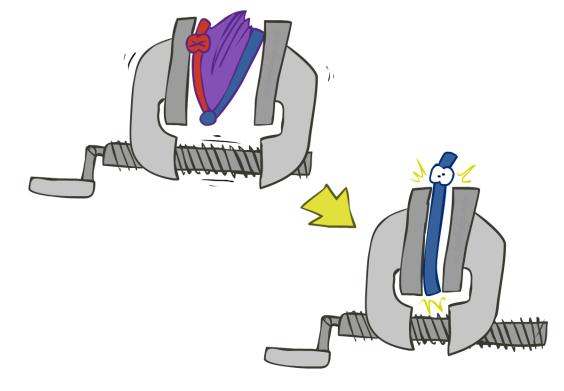


- Example: $P(U,V) \times P(V,W) \times P(W,X) = P(U,V,W,X)$
- Sizes: $[10,10] \times [10,10] \times [10,10] = [10,10,10,10]$
- I.e., 300 numbers blows up to 10,000 numbers!
- Factor blowup can make VE very expensive

Operation 2: Summing out a variable

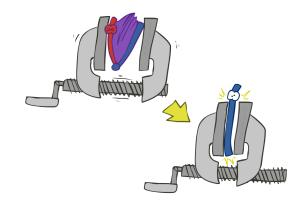
- Second basic operation: summing out (or eliminating) a variable from a factor
 - Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A,J) = P(A,j) + P(A,\neg j) = P(A)$



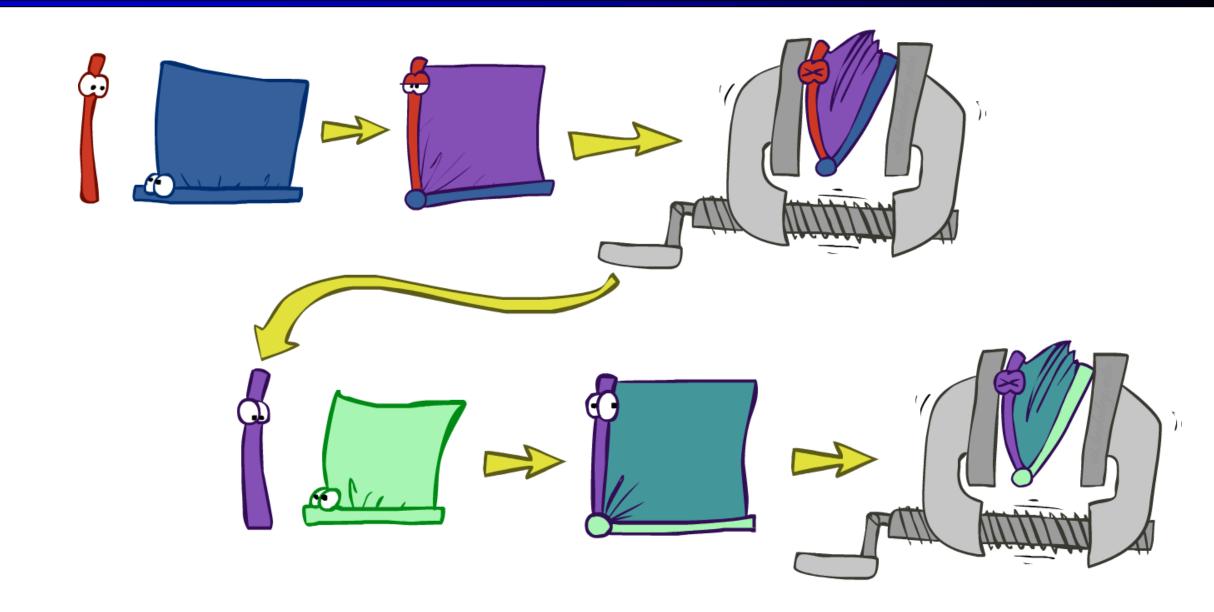


Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_a P(a | B, e) \times P(j | a) \times P(m | a)$
- $= P(a|B,e) \times P(j|a) \times P(m|a) +$
- $P(\neg a \mid B, e) \times P(j \mid \neg a) \times P(m \mid \neg a)$

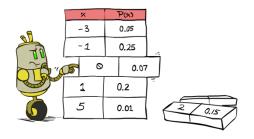


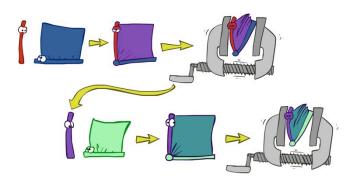
Variable Elimination



Variable Elimination

- Query: $P(Q | E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize





$$i \times \mathbf{Z} = \mathbf{Z}$$

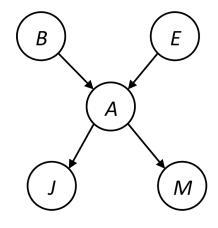
Variable Elimination

```
function VariableElimination(Q, e, bn) returns a distribution over Q
factors \leftarrow []
for each var in ORDER(bn.vars) do
    factors \leftarrow [MAKE-FACTOR(var, e)|factors]
    if var is a hidden variable then
         factors \leftarrow SUM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
```

Example

Query $P(B \mid j,m)$

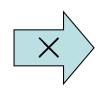
P(B) P(E) P(A|B,E) P(j|A) P(m|A)

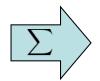


Choose A

$$P(A|B,E)$$

 $P(j|A)$
 $P(m|A)$





P(j,m|B,E)

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

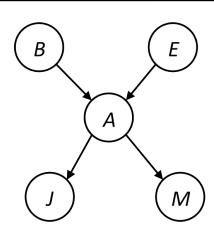
Example

P(j,m|B,E)P(E)

Choose E

$$P(E)$$

 $P(j,m|B,E)$

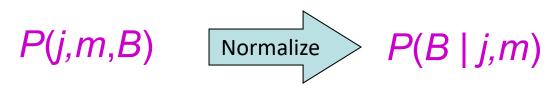


P(j,m|B)P(B)

Finish with B

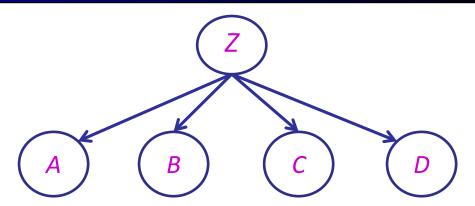
$$P(B)$$

 $P(j,m|B)$



Order matters

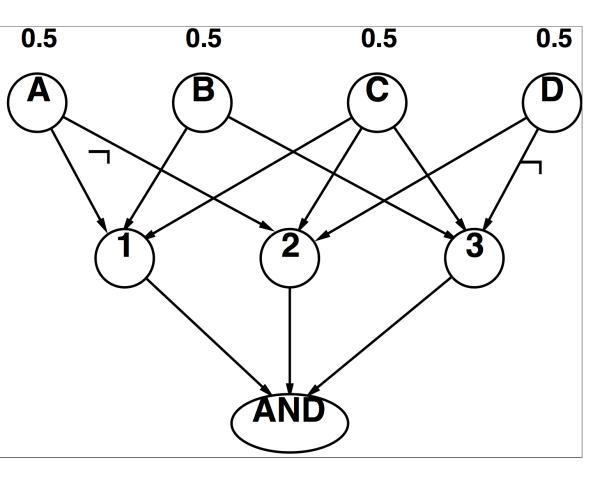
- Order the terms Z, A, B C, D
 - $P(D) = \alpha \sum_{z,a,b,c} P(z) P(a|z) P(b|z) P(c|z) P(D|z)$
 - $= \alpha \sum_{z} P(z) \sum_{a} P(a|z) \sum_{b} P(b|z) \sum_{c} P(c|z) P(D|z)$
 - Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
 - $P(D) = \alpha \sum_{a,b,c,z} P(a|z) P(b|z) P(c|z) P(D|z) P(z)$
 - $= \alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a|z) P(b|z) P(c|z) P(D|z) P(z)$
 - Largest factor has 4 variables (A,B,C,D)
- In general, with n leaves, factor of size 2ⁿ



VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

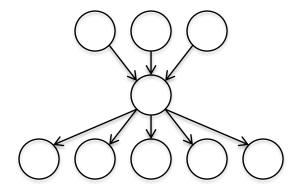
Worst Case Complexity? Reduction from SAT

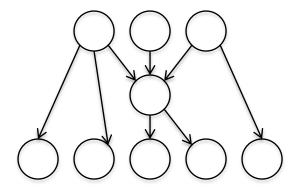


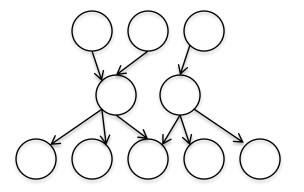
- CNF clauses:
 - 1. AvBvC
 - 2. $C \vee D \vee \neg A$
 - 3. B \vee C \vee \neg D
- P(AND) > 0 iff clauses are satisfiable
 - => NP-hard
- P(AND) = S x 0.5ⁿ where S is the number of satisfying assignments for clauses
 - = => #P-hard

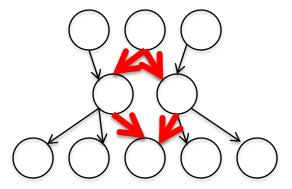
Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is *linear in the* network size if you eliminate from the leave towards the roots
 - This is essentially the same theorem as for treestructured CSPs









Bayes Nets

- ✓ Part I: Representation
- ✓ Part II: Exact inference
 - ✓ Enumeration (always exponential complexity)
 - ✓ Variable elimination (worst-case exponential complexity, often better)
 - ✓ Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data