
Announcements

 Midterm: Wednesday 7pm-9pm
 See midterm prep page (posted on Piazza, inst.eecs page)
 Four rooms; your room determined by last two digits of your SID:
 00-32: Dwinelle 155
 33-45: Genetics and Plant Biology 100
 46-62: Hearst Annex A1
 63-99: Pimentel 1

 Discussions this week by topic

 Survey: complete it before midterm; 80% participation = +1pt
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Bayes net global semantics

 Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  ∏i P(Xi | Parents(Xi))



Conditional independence semantics

 Every variable is conditionally independent of its non-descendants given its parents
 Conditional independence semantics <=> global semantics
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Example

 JohnCalls independent of Burglary given Alarm?
 Yes

 JohnCalls independent of MaryCalls given Alarm?
 Yes

 Burglary independent of Earthquake?
 Yes

 Burglary independent of Earthquake given Alarm?
 NO!
 Given that the alarm has sounded, both burglary and 

earthquake become more likely
 But if we then learn that a burglary has happened, the 

alarm is explained away and the probability of 
earthquake drops back 
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Markov blanket

 A variable’s Markov blanket consists of parents, children, children’s other parents
 Every variable is conditionally independent of all other variables given its Markov blanket
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CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

Instructor: Sergey Levine and Stuart Russell--- University of California, Berkeley



Bayes Nets

Part I: Representation

Part II: Exact inference

 Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential 
complexity, often better)

 Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data



 Examples:

 Posterior marginal probability
 P(Q|e1,..,ek) 
 E.g., what disease might I have?

 Most likely explanation:
 argmaxq,r,s P(Q=q,R=r,S=s|e1,..,ek)
 E.g., what did he say?

Inference

 Inference: calculating some 
useful quantity from a probability 
model (joint probability 
distribution)



Inference by Enumeration in Bayes Net

 Reminder of inference by enumeration:
 Any probability of interest can be computed by summing 

entries from the joint distribution
 Entries from the joint distribution can be obtained from a BN 

by multiplying the corresponding conditional probabilities

 P(B | j, m) =  α P(B, j, m) 
 =  α ∑e,a P(B, e, a, j, m) 
 =  α ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 So inference in Bayes nets means computing sums of 

products of numbers: sounds easy!!
 Problem: sums of exponentially many products!

B E

A

MJ



Can we do better?

 Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 16 multiplies, 7 adds
 Lots of repeated subexpressions!

 Rewrite as (u+v)(w+x)(y+z)
 2 multiplies, 3 adds

 ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 = P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(¬e)P(a|B,¬e)P(j|a)P(m|a)

+ P(B)P(e)P(¬a|B,e)P(j|¬a)P(m|¬a) + P(B)P(¬e)P(¬a|B,¬e)P(j|¬a)P(m|¬a)
Lots of repeated subexpressions!
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Variable elimination: The basic ideas

 Move summations inwards as far as possible
 P(B | j, m) =  α ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 =  α P(B) ∑e P(e) ∑a P(a|B,e) P(j|a) P(m|a)

 Do the calculation from the inside out
 I.e., sum over a first, then sum over e
 Problem: P(a|B,e) isn’t a single number, it’s a bunch of 

different numbers depending on the values of B and e
 Solution: use arrays of numbers (of various dimensions) 

with appropriate operations on them; these are called 
factors
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Factor Zoo



Factor Zoo I

 Joint distribution: P(X,Y)
 Entries P(x,y) for all x, y
 |X|x|Y| matrix
 Sums to 1

 Projected joint: P(x,Y)
 A slice of the joint distribution
 Entries P(x,y) for one x, all y
 |Y|-element vector
 Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J)

Number of variables (capitals) = dimensionality of the table

A \ J true false

true 0.09 0.01



Factor Zoo II

 Single conditional: P(Y | x)
 Entries P(y | x) for fixed x, all y
 Sums to 1

 Family of conditionals: 
P(X |Y)
 Multiple conditionals
 Entries P(x | y) for all x, y
 Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)
} - P(J|¬a)



Operation 1: Pointwise product

 First basic operation: pointwise product of factors 
(similar to a database join, not matrix multiply!)
 New factor has union of variables of the two original factors
 Each entry is the product of the corresponding entries from 

the original factors

 Example: P(J|A)  x  P(A)  =  P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =



Example: Making larger factors

 Example: P(A,J)  x  P(A,M)  =  P(A,J,M)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855
x =

P(A,M)
A \ M true false

true 0.07 0.03

false 0.009 0.891 A=true

A=false

P(A,J,M)



Example: Making larger factors

 Example: P(U,V)  x  P(V,W) x  P(W,X)  =  P(U,V,W,X)
 Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 
 I.e., 300 numbers blows up to 10,000 numbers!
 Factor blowup can make VE very expensive



Operation 2: Summing out a variable

 Second basic operation: summing out (or 
eliminating) a variable from a factor
 Shrinks a factor to a smaller one

 Example: ∑j  P(A,J) = P(A,j) + P(A,¬j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J



Summing out from a product of factors

 Project the factors each way first, then sum the products

 Example: ∑a P(a|B,e) x P(j|a) x P(m|a)
 = P(a|B,e) x P(j|a) x P(m|a) + 
 P(¬a|B,e) x P(j|¬a) x P(m|¬a)



Variable Elimination



Variable Elimination

 Query: P(Q|E1=e1,.., Ek=ek) 

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables 
(not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize



Variable Elimination

function VariableElimination(Q , e, bn) returns a distribution over Q
factors ← [ ]
for each var in ORDER(bn.vars) do

factors ← [MAKE-FACTOR(var, e)|factors] 
if var is a hidden variable then

factors ← SUM-OUT(var,factors) 
return NORMALIZE(POINTWISE-PRODUCT(factors)) 
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Example

Choose A

P(B)     P(E)     P(A|B,E) P(j|A) P(m|A)

Query P(B | j,m) 

P(A|B,E)
P(j|A)
P(m|A)

P(j,m|B,E)

P(B)     P(E)     P(j,m|B,E)



Example

Normalize

Choose E
P(E)
P(j,m|B,E)

P(j,m|B)

P(B)     P(E)     P(j,m|B,E)

Finish with B
P(B)
P(j,m|B) P(j,m,B)

P(B)     P(j,m|B)

P(B | j,m)



Order matters

 Order the terms Z, A, B C, D
 P(D) =  α ∑z,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)
 =  α ∑z P(z) ∑a P(a|z) ∑b P(b|z) ∑c P(c|z) P(D|z)
 Largest factor has 2 variables (D,Z)

 Order the terms A, B C, D, Z
 P(D) =  α ∑a,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
 =  α ∑a ∑b ∑c ∑z P(a|z) P(b|z) P(c|z) P(D|z) P(z)
 Largest factor has 4 variables (A,B,C,D)

 In general, with n leaves, factor of size 2n

D

Z

A B C



VE: Computational and Space Complexity

 The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

 The elimination ordering can greatly affect the size of the largest factor.  
 E.g., previous slide’s example 2n vs. 2

 Does there always exist an ordering that only results in small factors?
 No!



Worst Case Complexity? Reduction from SAT

 CNF clauses:
1. A v B v C
2. C v D v ¬A
3. B v C v ¬D

 P(AND) > 0 iff clauses are satisfiable
 => NP-hard

 P(AND) = S x 0.5n where S is the 
number of satisfying assignments for 
clauses
 => #P-hard



Polytrees

 A polytree is a directed graph with 
no undirected cycles

 For poly-trees the complexity of 
variable elimination is linear in the 
network size if you eliminate from 
the leave towards the roots
 This is essentially the same theorem as for tree-

structured CSPs



Bayes Nets

Part I: Representation

Part II: Exact inference

 Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential 
complexity, often better)

 Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data
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