
Announcements

 Midterm: Wednesday 7pm-9pm
 See midterm prep page (posted on Piazza, inst.eecs page)
 Four rooms; your room determined by last two digits of your SID:
 00-32: Dwinelle 155
 33-45: Genetics and Plant Biology 100
 46-62: Hearst Annex A1
 63-99: Pimentel 1

 Discussions this week by topic

 Survey: complete it before midterm; 80% participation = +1pt
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Bayes net global semantics

 Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  ∏i P(Xi | Parents(Xi))



Conditional independence semantics

 Every variable is conditionally independent of its non-descendants given its parents
 Conditional independence semantics <=> global semantics
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Example

 JohnCalls independent of Burglary given Alarm?
 Yes

 JohnCalls independent of MaryCalls given Alarm?
 Yes

 Burglary independent of Earthquake?
 Yes

 Burglary independent of Earthquake given Alarm?
 NO!
 Given that the alarm has sounded, both burglary and 

earthquake become more likely
 But if we then learn that a burglary has happened, the 

alarm is explained away and the probability of 
earthquake drops back 
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Markov blanket

 A variable’s Markov blanket consists of parents, children, children’s other parents
 Every variable is conditionally independent of all other variables given its Markov blanket
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CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

Instructor: Sergey Levine and Stuart Russell--- University of California, Berkeley



Bayes Nets

Part I: Representation

Part II: Exact inference

 Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential 
complexity, often better)

 Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data



 Examples:

 Posterior marginal probability
 P(Q|e1,..,ek) 
 E.g., what disease might I have?

 Most likely explanation:
 argmaxq,r,s P(Q=q,R=r,S=s|e1,..,ek)
 E.g., what did he say?

Inference

 Inference: calculating some 
useful quantity from a probability 
model (joint probability 
distribution)



Inference by Enumeration in Bayes Net

 Reminder of inference by enumeration:
 Any probability of interest can be computed by summing 

entries from the joint distribution
 Entries from the joint distribution can be obtained from a BN 

by multiplying the corresponding conditional probabilities

 P(B | j, m) =  α P(B, j, m) 
 =  α ∑e,a P(B, e, a, j, m) 
 =  α ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 So inference in Bayes nets means computing sums of 

products of numbers: sounds easy!!
 Problem: sums of exponentially many products!
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Can we do better?

 Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 16 multiplies, 7 adds
 Lots of repeated subexpressions!

 Rewrite as (u+v)(w+x)(y+z)
 2 multiplies, 3 adds

 ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 = P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(¬e)P(a|B,¬e)P(j|a)P(m|a)

+ P(B)P(e)P(¬a|B,e)P(j|¬a)P(m|¬a) + P(B)P(¬e)P(¬a|B,¬e)P(j|¬a)P(m|¬a)
Lots of repeated subexpressions!
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Variable elimination: The basic ideas

 Move summations inwards as far as possible
 P(B | j, m) =  α ∑e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
 =  α P(B) ∑e P(e) ∑a P(a|B,e) P(j|a) P(m|a)

 Do the calculation from the inside out
 I.e., sum over a first, then sum over e
 Problem: P(a|B,e) isn’t a single number, it’s a bunch of 

different numbers depending on the values of B and e
 Solution: use arrays of numbers (of various dimensions) 

with appropriate operations on them; these are called 
factors
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Factor Zoo



Factor Zoo I

 Joint distribution: P(X,Y)
 Entries P(x,y) for all x, y
 |X|x|Y| matrix
 Sums to 1

 Projected joint: P(x,Y)
 A slice of the joint distribution
 Entries P(x,y) for one x, all y
 |Y|-element vector
 Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J)

Number of variables (capitals) = dimensionality of the table

A \ J true false

true 0.09 0.01



Factor Zoo II

 Single conditional: P(Y | x)
 Entries P(y | x) for fixed x, all y
 Sums to 1

 Family of conditionals: 
P(X |Y)
 Multiple conditionals
 Entries P(x | y) for all x, y
 Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)
} - P(J|¬a)



Operation 1: Pointwise product

 First basic operation: pointwise product of factors 
(similar to a database join, not matrix multiply!)
 New factor has union of variables of the two original factors
 Each entry is the product of the corresponding entries from 

the original factors

 Example: P(J|A)  x  P(A)  =  P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =



Example: Making larger factors

 Example: P(A,J)  x  P(A,M)  =  P(A,J,M)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855
x =

P(A,M)
A \ M true false

true 0.07 0.03

false 0.009 0.891 A=true

A=false

P(A,J,M)



Example: Making larger factors

 Example: P(U,V)  x  P(V,W) x  P(W,X)  =  P(U,V,W,X)
 Sizes: [10,10]  x  [10,10] x  [10,10] =  [10,10,10,10] 
 I.e., 300 numbers blows up to 10,000 numbers!
 Factor blowup can make VE very expensive



Operation 2: Summing out a variable

 Second basic operation: summing out (or 
eliminating) a variable from a factor
 Shrinks a factor to a smaller one

 Example: ∑j  P(A,J) = P(A,j) + P(A,¬j) = P(A) 

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J



Summing out from a product of factors

 Project the factors each way first, then sum the products

 Example: ∑a P(a|B,e) x P(j|a) x P(m|a)
 = P(a|B,e) x P(j|a) x P(m|a) + 
 P(¬a|B,e) x P(j|¬a) x P(m|¬a)



Variable Elimination



Variable Elimination

 Query: P(Q|E1=e1,.., Ek=ek) 

 Start with initial factors:
 Local CPTs (but instantiated by evidence)

 While there are still hidden variables 
(not Q or evidence):
 Pick a hidden variable H
 Join all factors mentioning H
 Eliminate (sum out) H

 Join all remaining factors and normalize



Variable Elimination

function VariableElimination(Q , e, bn) returns a distribution over Q
factors ← [ ]
for each var in ORDER(bn.vars) do

factors ← [MAKE-FACTOR(var, e)|factors] 
if var is a hidden variable then

factors ← SUM-OUT(var,factors) 
return NORMALIZE(POINTWISE-PRODUCT(factors)) 
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Example

Choose A

P(B)     P(E)     P(A|B,E) P(j|A) P(m|A)

Query P(B | j,m) 

P(A|B,E)
P(j|A)
P(m|A)

P(j,m|B,E)

P(B)     P(E)     P(j,m|B,E)



Example

Normalize

Choose E
P(E)
P(j,m|B,E)

P(j,m|B)

P(B)     P(E)     P(j,m|B,E)

Finish with B
P(B)
P(j,m|B) P(j,m,B)

P(B)     P(j,m|B)

P(B | j,m)



Order matters

 Order the terms Z, A, B C, D
 P(D) =  α ∑z,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)
 =  α ∑z P(z) ∑a P(a|z) ∑b P(b|z) ∑c P(c|z) P(D|z)
 Largest factor has 2 variables (D,Z)

 Order the terms A, B C, D, Z
 P(D) =  α ∑a,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
 =  α ∑a ∑b ∑c ∑z P(a|z) P(b|z) P(c|z) P(D|z) P(z)
 Largest factor has 4 variables (A,B,C,D)

 In general, with n leaves, factor of size 2n

D

Z

A B C



VE: Computational and Space Complexity

 The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

 The elimination ordering can greatly affect the size of the largest factor.  
 E.g., previous slide’s example 2n vs. 2

 Does there always exist an ordering that only results in small factors?
 No!



Worst Case Complexity? Reduction from SAT

 CNF clauses:
1. A v B v C
2. C v D v ¬A
3. B v C v ¬D

 P(AND) > 0 iff clauses are satisfiable
 => NP-hard

 P(AND) = S x 0.5n where S is the 
number of satisfying assignments for 
clauses
 => #P-hard



Polytrees

 A polytree is a directed graph with 
no undirected cycles

 For poly-trees the complexity of 
variable elimination is linear in the 
network size if you eliminate from 
the leave towards the roots
 This is essentially the same theorem as for tree-

structured CSPs



Bayes Nets

Part I: Representation

Part II: Exact inference

 Enumeration (always exponential complexity)

 Variable elimination (worst-case exponential 
complexity, often better)

 Inference is NP-hard in general

Part III: Approximate Inference

Later: Learning Bayes nets from data
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