Announcements

- HW 8 is out, due **tonight** at 11:59 pm
- Project 4 due 4/12, this Friday

CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Sergey Levine and Stuart Russell --- University of California, Berkeley [These slides were created by Dan Klein, Pieter Abbeel, and Sergey Levine. http://ai.berkeley.edu.]

Markov Models

- Basic conditional independence:
 - Past and future independent given the present
 - Each time step only depends on the previous
 - This is called the (first order) Markov property

Example Markov Chain: Weather

States: X = {rain, sun}

Initial distribution: 0.5 sun

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Forward Algorithm

• Question: What's P(X) on some day t?

$$X_1$$
 X_2 X_3 X_4 X_4

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Stationary Distributions

• Question: What's P(X) at time t = infinity?

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe outputs (effects) at each time step

Example: Weather HMM

An HMM is defined by:

• Initial distribution: $P(X_1)$

■ Transitions: $P(X_t \mid X_{t-1})$

• Emissions: $P(E_t \mid X_t)$

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Inference tasks

- Filtering: $P(X_t|e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k}|e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: $arg max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Example from Michael Pfeiffer

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

Filtering: Find State Given Past Evidence

We are given evidence at each time and want to know

$$f_{1:t}(X) = P(X_t|e_{1:t})$$

- Idea: start with $P(X_1)$ and derive $f_{1:t}$ in terms of $f_{1:t-1}$
 - equivalently, derive f_{1:t+1} in terms of f_{1:t}

$$f_{1:t}(X) = P(X_t|e_{1:t}) \xrightarrow{\text{using } e_{t+1}} f_{1:t+1}(X) = P(X_{t+1}|e_{1:t+1})$$

Two Steps: Passage of Time + Observation

Passage of Time

Assume we have current belief

$$f_{1:t}(X) = P(X_t|e_{1:t})$$

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Basic idea: beliefs get "pushed" through the transitions

Or compactly:

$$f'_{1:t+1}(X_{t+1}) = \sum_{x_t} P(X'|x_t) f_{1:t}(x_t)$$

Example: Passage of Time

As time passes, uncertainty "accumulates"

T = 2

(Transition model: ghosts usually go clockwise)

Observation

Assume we have current belief P(X | previous evidence):

$$f'_{1:t+1}(X) = P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

• Or, compactly: $f'_{1:t+1}(X_{t+1}) = \sum_{x_t} P(X'|x_t) f_{1:t}(x_t)$

$$f_{1:t+1}(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1}) f'_{1:t+1}(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$f_{1:t+1}(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1}) f'_{1:t+1}(X_{t+1})$$

HMM Filtering Algorithm

We are given evidence at each time and want to know

$$f_{1:t}(X) = P(X_t|e_{1:t}) \propto_{X_t} P(X_t,e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store f(X)
 - E.g. X is continuous
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice
- Particle is just new name for sample

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

• •	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point

- So, many x may have P(x) = 0!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)(3,2)

(1,2)

(3,3)

(3,3)

(2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$
$$f(X) \propto P(e|X)f'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2) (2,2)

Particles:

(3	,2)	w=.9

$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9 $(3,1)$ w=.4

$$(3,3)$$
 w=.4

$$(2,3)$$
 w=.2

$$(3,2)$$
 w=.9

$$(2,2)$$
 w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4

(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Most Likely Explanation

HMMs: MLE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution: $P(X_1)$
 - Transitions: $P(X|X_{-1})$
 - Emissions: P(E|X)

- New query: most likely explanation: $\underset{x_{1:t}}{\operatorname{arg\,max}} P(x_{1:t}|e_{1:t})$
- New method: the Viterbi algorithm

State Trellis

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} o x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is that sequence's probability along with the evidence
- Forward algorithm computes sums of paths, Viterbi computes best paths

Finding the Most Likely Path

Forward Algorithm (Sum)

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

Viterbi Forward Phase (Max)

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$
$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

probability of best path 1: t that ends at x_t

Why is This True?

$$m_1[x_1] = P(e_1|x_1)P(x_1)$$
 probability of best path 1: t that ends at x_t
 $m_2[x_2] = \max\{P(e_2|x_2)P(x_2|x_1 = \text{rain})m_1[x_1 = \text{rain}], P(e_2|x_2)P(x_2|x_1 = \text{sun})m_1[x_1 = \text{sun}]\}$
 $= \max_{x_1} P(e_2|x_2)P(x_2|x_1)m_1[x_1]$

$$m_t[x_t] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t})$$
$$= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Now What?

 $m_N[x_N]$

probability of best path 1:N that ends at x_N

what is the last state on the most likely path?

$$\arg\max_{x_N} m_N[x_N]$$

what is the *second to last* state on the most likely path?

A Tricky Counter-Example

$$P(e_{1}|x_{1})P(x_{1}) \qquad P(e_{2}|x_{2})P(x_{2}|x_{1})$$

$$0.7 \qquad \text{sun} \qquad 0.01 \qquad \text{sun} \qquad \text{arg } \max_{x_{1}} m_{1}[x_{1}] = ? \qquad \text{sun}!$$

$$0.1 \qquad m_{2}[x_{2}] = \max_{x_{1}} P(e_{2}|x_{2})P(x_{2}|x_{1})m_{1}[x_{1}]$$

$$m_{2}[x_{2} = \text{sun}] = \max\{0.7 \times 0.01, 0.1 \times 0.5\} = 0.05$$

$$m_{2}[x_{2} = \text{rain}] = \max\{0.7 \times 0.01, 0.1 \times 0.8\} = 0.08$$

$$\arg\max_{x_{2}} m_{2}[x_{2}] = \min$$

$$P(x_{1} = \text{sun}, x_{2} = \text{rain}, e_{1}, e_{2}) = 0.7 \times 0.01 = 0.007$$

best path 1: t that ends at $x_t \neq \text{best path 1}: N$ that goes through x_t

What do We Do?

idea: what if we also save where the best path came from?

$$m_t[x_t] = \max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_t[x_t] = \arg\max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

Follow the Breadcrumbs...

for t = 1 to N:

$$m_t[x_t] = \max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_t[x_t] = \arg\max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

last state on most likely path: $x_N^* = \arg\max_{x_N} m_N[x_N]$ second to last state on most likely path: $x_{N-1}^* = a_N[x_N^*]$ third to last state on most likely path: $x_{N-2}^* = a_{N-1}[x_{N-1}^*]$

Follow the Breadcrumbs...

for
$$t = 1$$
 to N :
$$m_t[x_t] = \max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$a_t[x_t] = \arg\max_{x_{t-1}} P(e_t|x_t) P(x_t|x_{t-1}) m_{t-1}[x_{t-1}]$$

$$x_N^* = \arg\max_{x_N} m_N[x_N]$$
for $t = N$ to 2:
$$x_{t-1}^* = a_t[x_t^*]$$

Most Likely Explanation

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $\mathbf{G_1}^a = (3,3) \mathbf{G_1}^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed

 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only