
Announcements

▪ HW 8 is out, due tonight at 11:59 pm

▪ Project 4 due 4/12, this Friday



CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Sergey Levine and Stuart Russell --- University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel, and Sergey Levine. http://ai.berkeley.edu.]



Markov Models

▪ Basic conditional independence:
▪ Past and future independent given the present
▪ Each time step only depends on the previous
▪ This is called the (first order) Markov property



Example Markov Chain: Weather

▪ States: X = {rain, sun}
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▪ Initial distribution: 0.5 sun

▪ CPT P(Xt | Xt-1):



Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?
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Also:



Hidden Markov Models

▪ Markov chains not so useful for most agents
▪ Need observations to update your beliefs

▪ Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM
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▪ An HMM is defined by:
▪ Initial distribution:
▪ Transitions:
▪ Emissions:



Inference tasks

▪ Filtering: P(Xt|e1:t)

▪ belief state—input to the decision process of a rational agent 

▪ Prediction: P(Xt+k|e1:t) for k > 0 

▪ evaluation of possible action sequences; like filtering without the evidence 

▪ Smoothing: P(Xk|e1:t) for 0 ≤ k < t

▪ better estimate of past states, essential for learning 

▪ Most likely explanation: arg maxx1:t
P(x1:t | e1:t) 

▪ speech recognition, decoding with a noisy channel 



Example: Robot Localization

t=0

Sensor model: four bits for wall/no-wall in each direction, 
never more than 1 mistake

Transition model: action may fail with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, 

but less likely (required 1 mistake)

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Filtering: Find State Given Past Evidence

▪ We are given evidence at each time and want to know

▪ Idea: start with P(X1) and derive f1:t in terms of f1:t-1

▪ equivalently, derive f1:t+1 in terms of f1:t



Two Steps: Passage of Time + Observation
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Passage of Time

▪ Assume we have current belief

▪ Then, after one time step passes:

▪ Basic idea: beliefs get “pushed” through the transitions

X2X1

▪ Or compactly:



Example: Passage of Time

▪ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Observation

▪ Assume we have current belief P(X | previous evidence):

▪ Then, after evidence comes in:

▪ Or, compactly:

E1

X1

▪ Basic idea: beliefs “reweighted” 
by likelihood of evidence

▪ Unlike passage of time, we have 
to renormalize



Example: Observation

▪ As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



HMM Filtering Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Particle Filtering



Particle Filtering
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▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store f(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
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(2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the 
distribution

▪ Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



Robot Localization

▪ In robot localization:
▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Example: Robot Localization



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by
▪ States X
▪ Observations E
▪ Initial distribution:
▪ Transitions:
▪ Emissions:

▪ New query: most likely explanation:

▪ New method: the Viterbi algorithm
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State Trellis

▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition

▪ Each arc has weight

▪ Each path is a sequence of states

▪ The product of weights on a path is that sequence’s probability along with the evidence

▪ Forward algorithm computes sums of paths, Viterbi computes best paths
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Finding the Most Likely Path
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Why is This True?
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Now What?
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A Tricky Counter-Example
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What do We Do?
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Follow the Breadcrumbs…
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Follow the Breadcrumbs…
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Most Likely Explanation



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using 
multiple sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs
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DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3) 

▪ Elapse time: Sample a successor for each particle 

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood



Exact Inference in DBNs

▪ Variable elimination applies to dynamic Bayes nets

▪ Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) 
is computed

▪ Online belief updates: Eliminate all variables from the previous time step; store factors 
for current time only
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