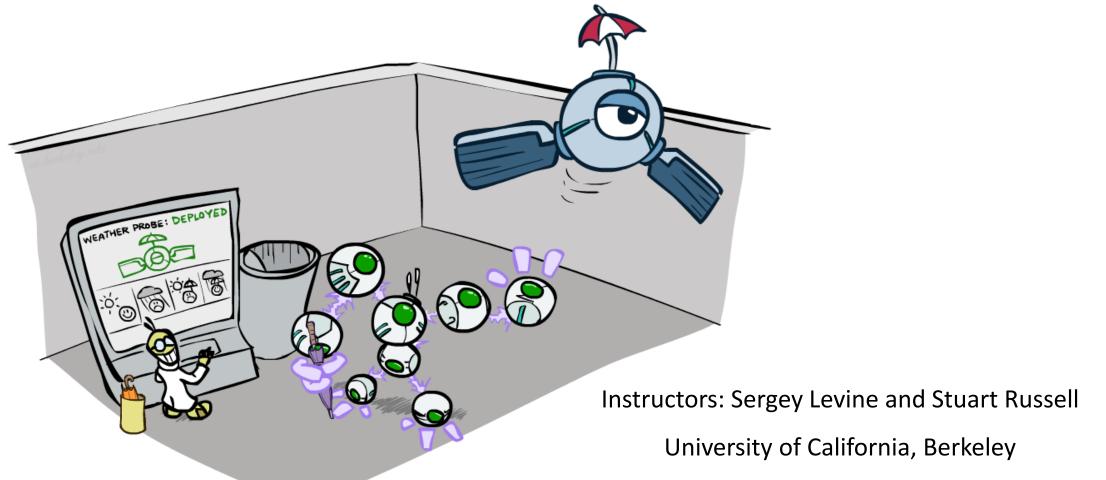
Announcements

- Project 4 due Friday
- HW9 due next Monday

CS 188: Artificial Intelligence

Decision Networks and Value of Perfect Information



[These slides were created by Dan Klein, Pieter Abbeel, Sergey Levine for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

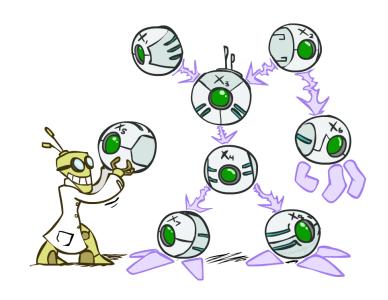
Bayes' Net

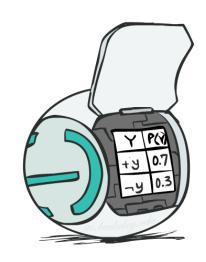
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

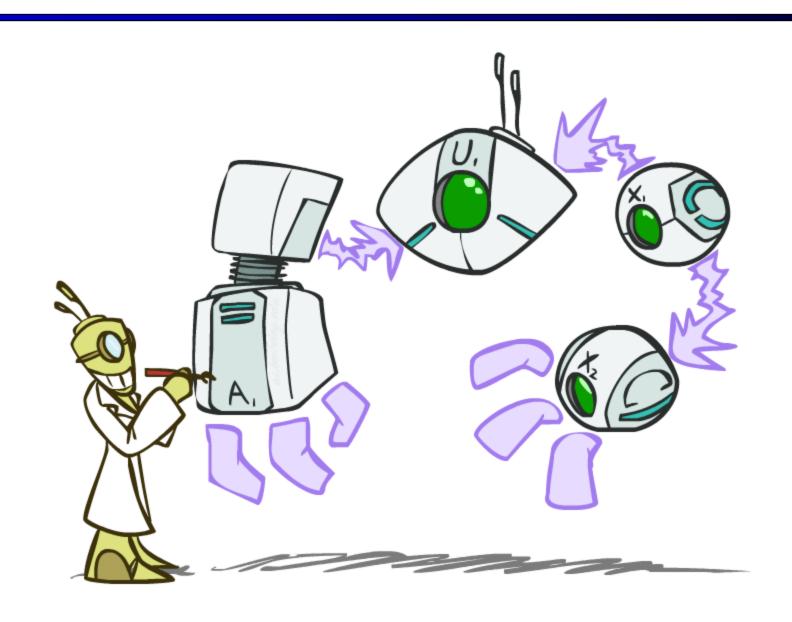
$$P(X|a_1\ldots a_n)$$

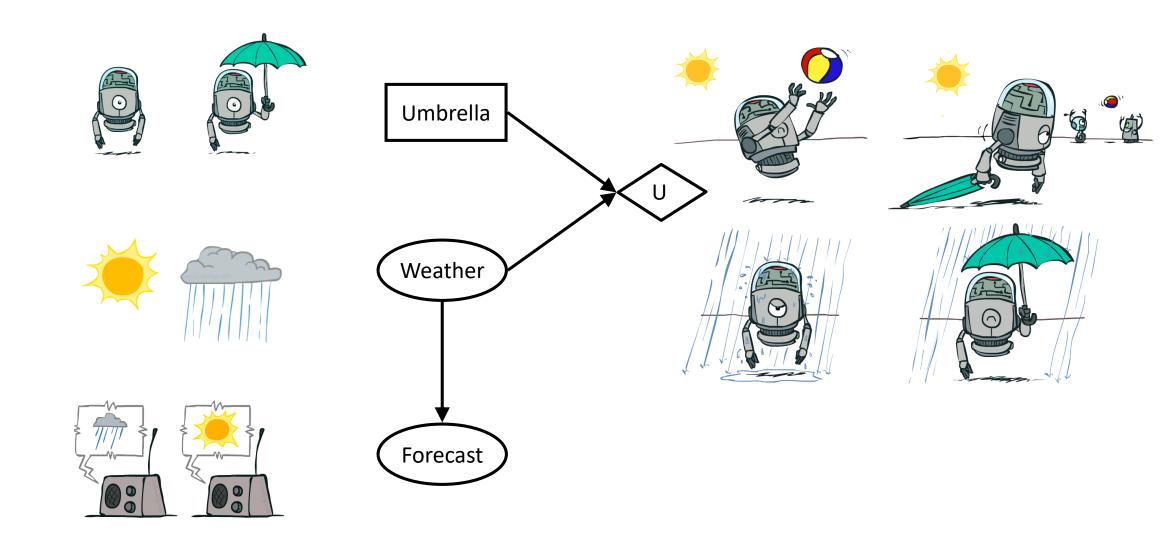
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

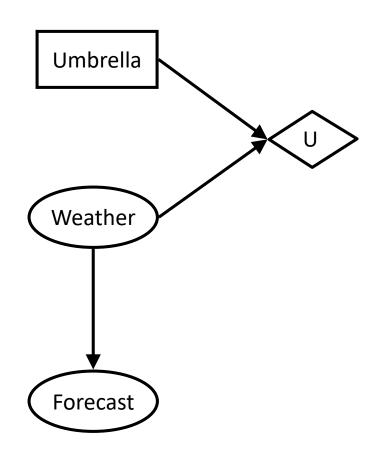






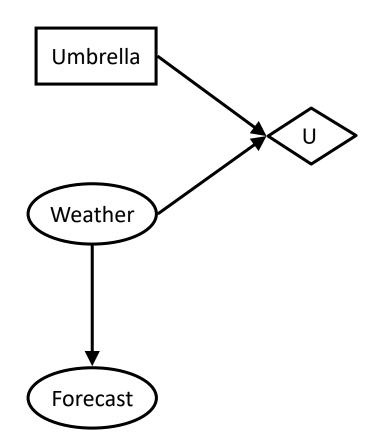


- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like BNs)
- Actions (rectangles, cannot have parents, act as observed evidence)
- Utility node (diamond, depends on action and chance nodes)



Action selection

- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action



$$EU(a) = \sum_{Pa(U)} P(Pa(U)|E = e)U(Pa(U), a)$$

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$

$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

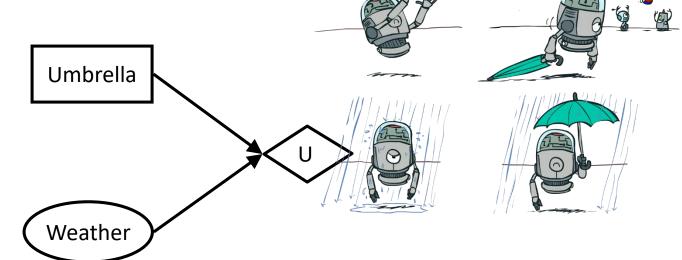
Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

$$= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$$

Optimal decision = leave

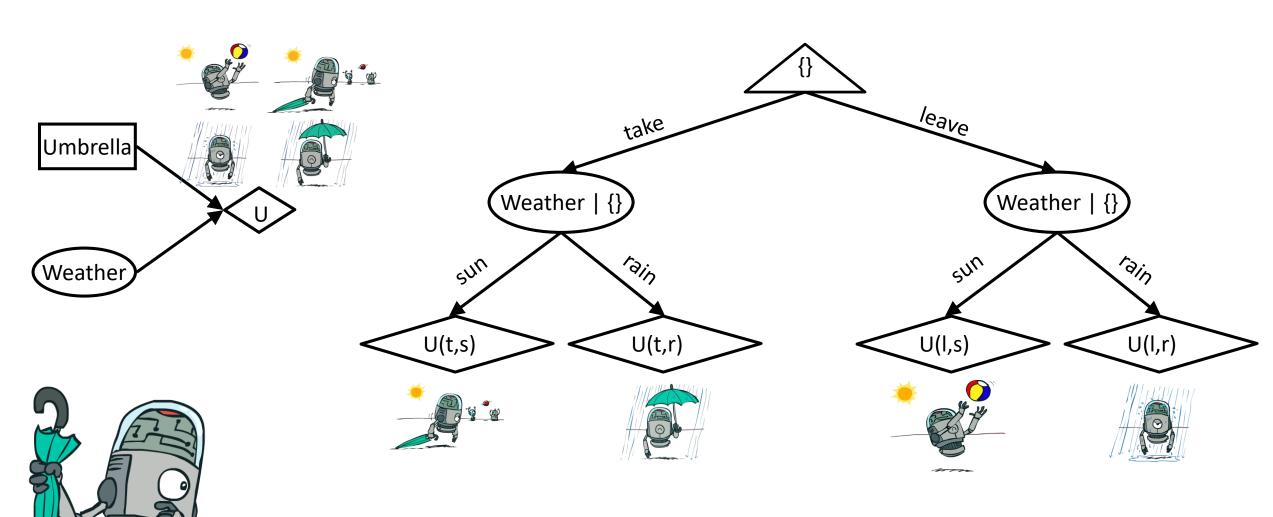
$$MEU(\emptyset) = \max_{a} EU(a) = 70$$



W	P(W)
sun	0.7
rain	0.3

Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees



Almost exactly like expectimax / MDPs

Example: Decision Networks

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$

$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

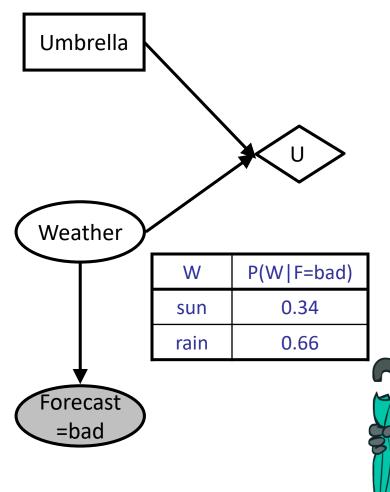
Umbrella = take

$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$

$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

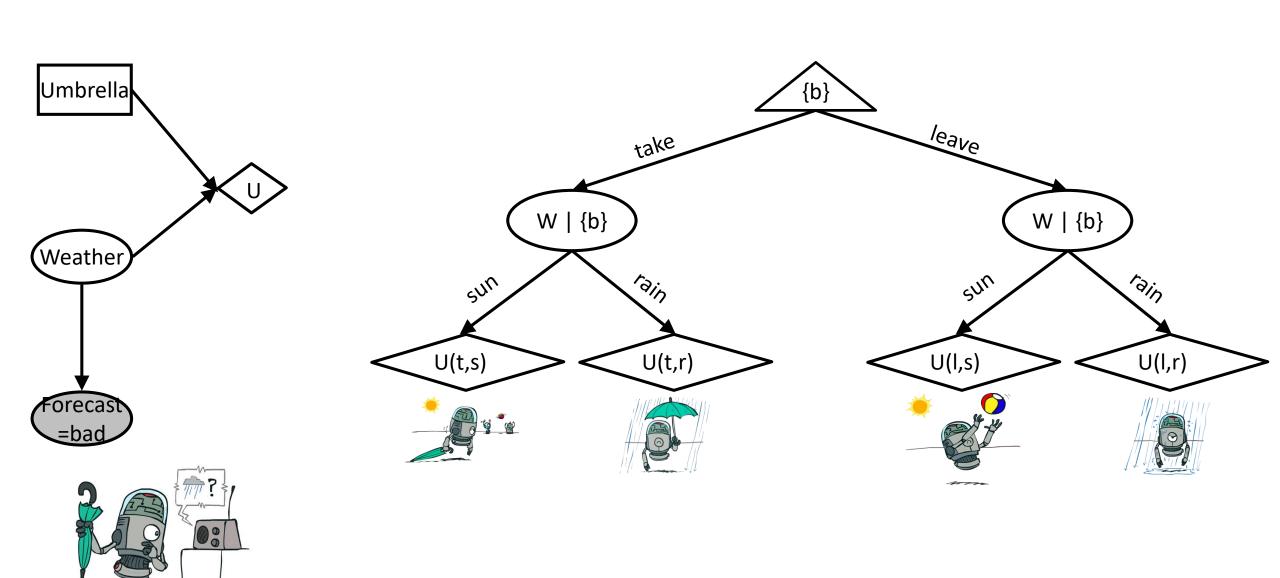
Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$



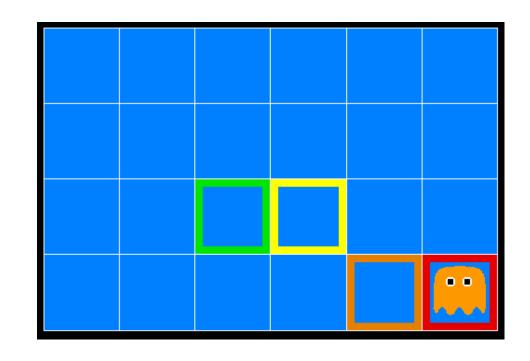
Α	W	U(A,W)
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decisions as Outcome Trees



Inference in Ghostbusters

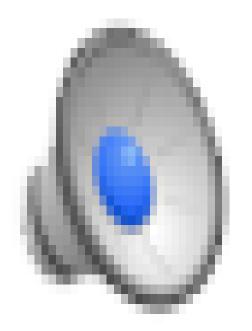
- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



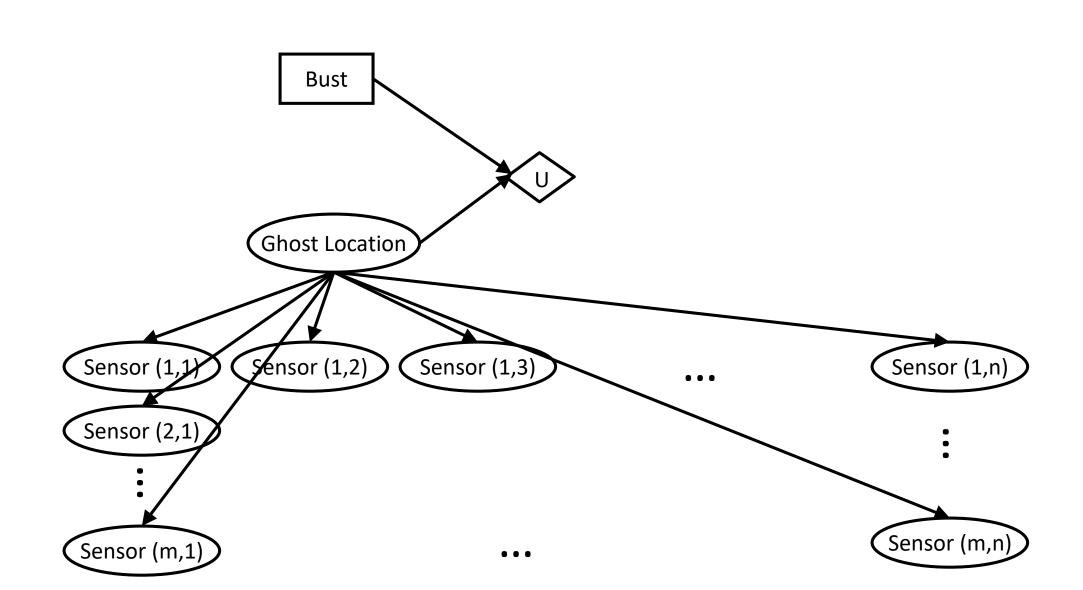
Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

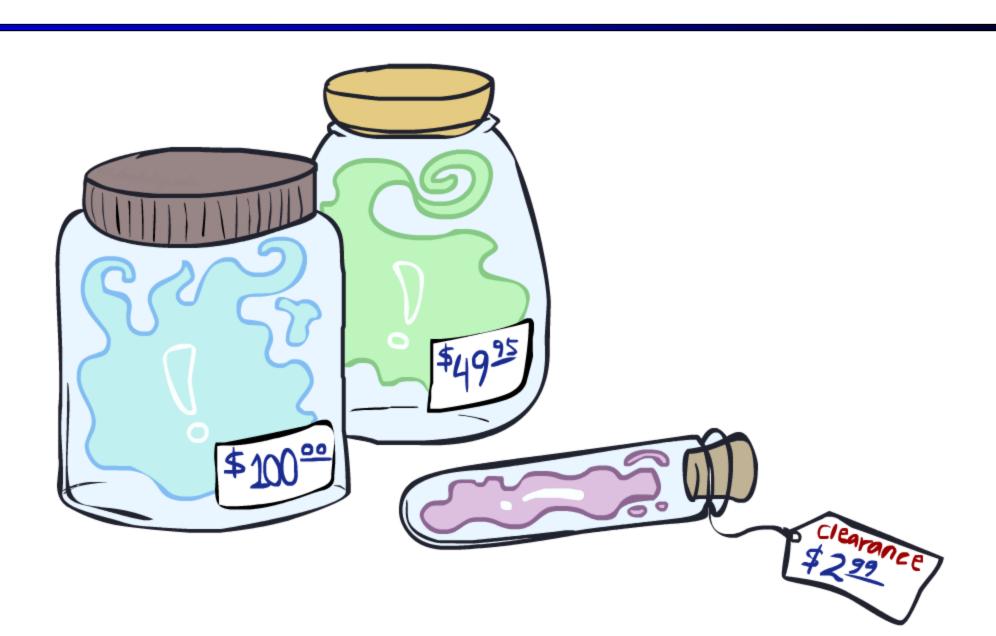
Video of Demo Ghostbusters with Probability



Ghostbusters Decision Network

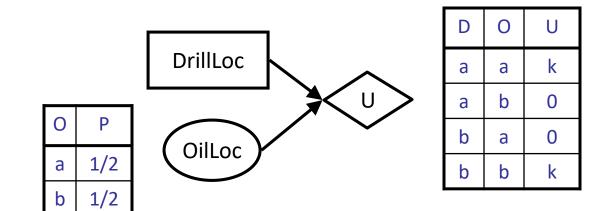


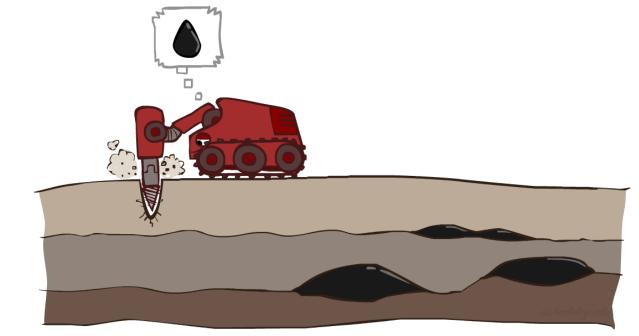
Value of Information



Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b," prob 0.5 each
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k/2
 - Fair price of information: k/2





VPI Example: Weather

MEU with no evidence

$$MEU(\emptyset) = \max_{a} EU(a) = 70$$

MEU if forecast is bad

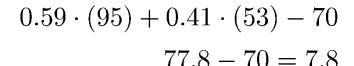
$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

MEU if forecast is good

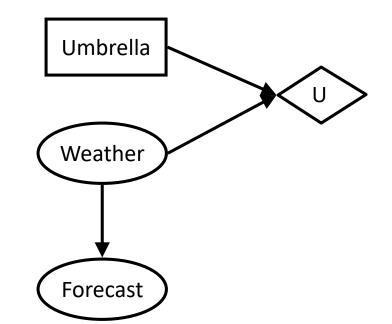
$$MEU(F = good) = \max_{a} EU(a|good) = 95$$

Forecast distribution

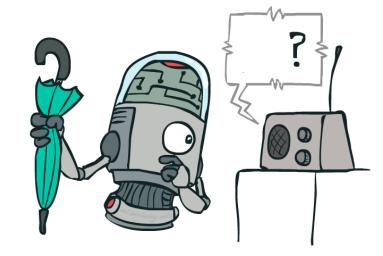
F	P(F)	N
good	0.59	
		V



$$VPI(E'|e) = \left(\sum_{e'} P(e'|e)MEU(e,e')\right) - MEU(e)$$



Α	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70



Value of Information

Assume we have evidence E=e. Value if we act now:

$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$

Assume we see that E' = e'. Value if we act then:

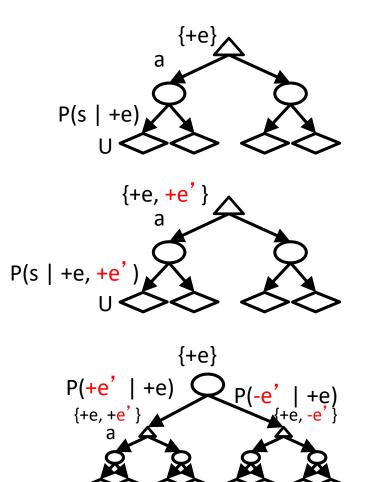
$$\mathsf{MEU}(e, e') = \max_{a} \sum_{s} P(s|e, e') \ U(s, a)$$

- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act:

$$MEU(e, E') = \sum_{e'} P(e'|e)MEU(e, e')$$

Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$VPI(E'|e) = MEU(e, E') - MEU(e)$$



VPI Properties

Can it be negative?

$$\forall E', e : \mathsf{VPI}(E'|e) \geq 0$$

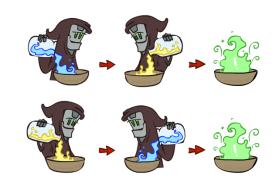
Is it additive?

(think of observing E_i twice)

$$VPI(E_j, E_k|e) \neq VPI(E_j|e) + VPI(E_k|e)$$

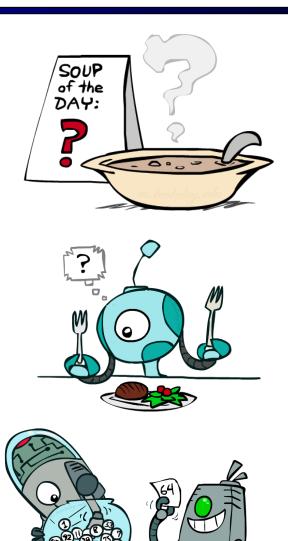
Is it order-dependent?

$$VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$$
$$= VPI(E_k|e) + VPI(E_j|e, E_k)$$



Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?



Value of Imperfect Information?

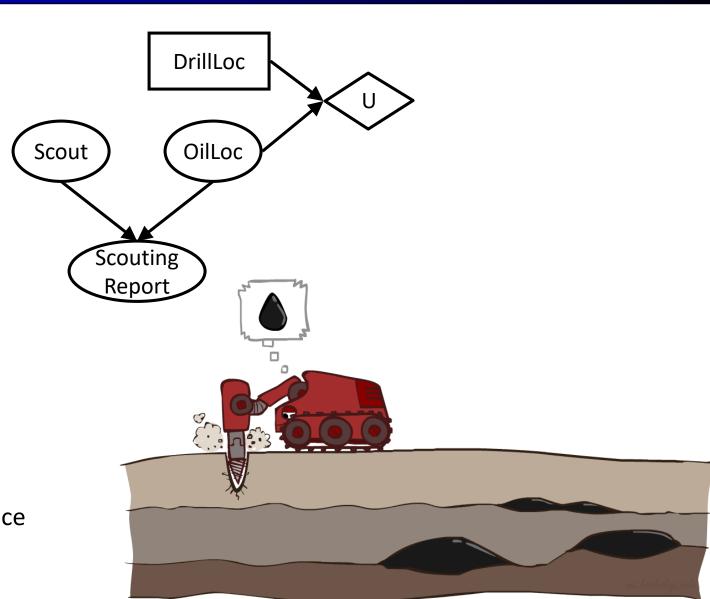
- No such thing
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

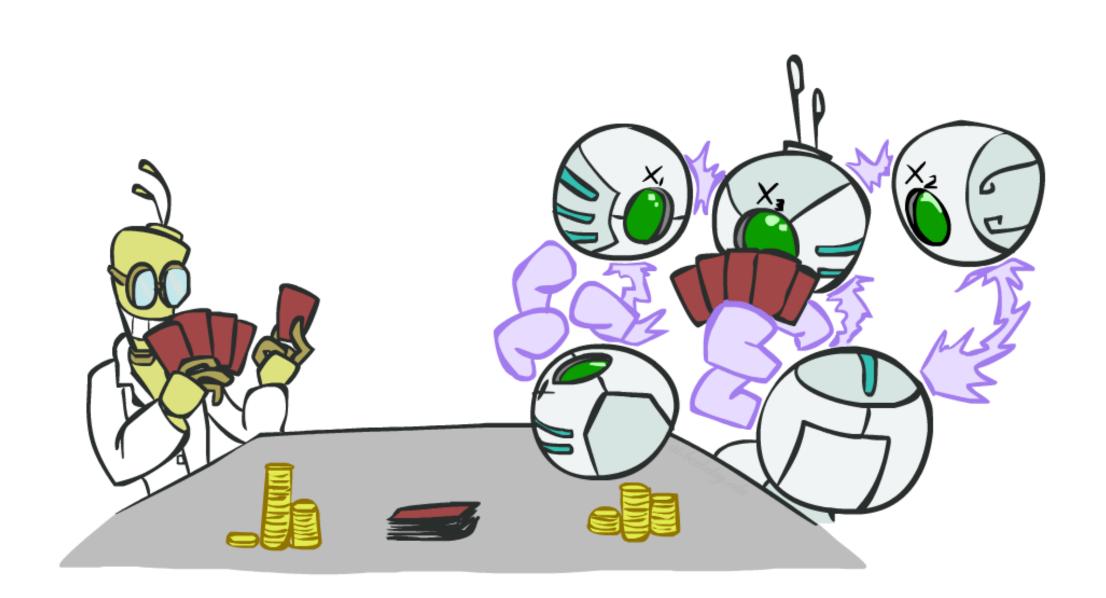
- VPI(OilLoc) ?
- VPI(ScoutingReport) ?
- VPI(Scout) ?
- VPI(Scout | ScoutingReport) ?

Generally:

If Parents(U) \parallel Z | CurrentEvidence Then VPI(Z | CurrentEvidence) = 0



POMDPs



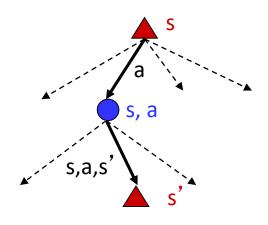
POMDPs

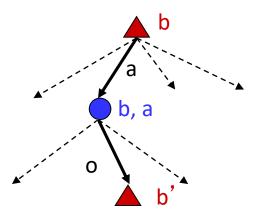
MDPs have:

- States S
- Actions A
- Transition function P(s' | s,a) (or T(s,a,s'))
- Rewards R(s,a,s')

POMDPs add:

- Observations O
- Observation function P(o|s) (or O(s,o))
- POMDPs are MDPs over belief states b (distributions over S)

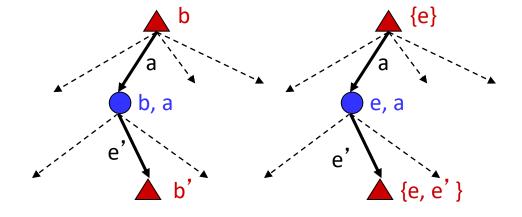




Example: Ghostbusters

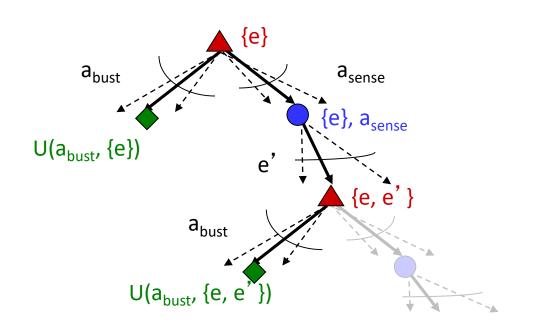
In Ghostbusters:

- Belief state determined by evidence to date {e}
- Tree really over evidence sets
- Probabilistic reasoning needed to predict new evidence given past evidence

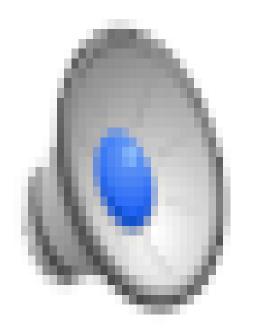


Solving POMDPs

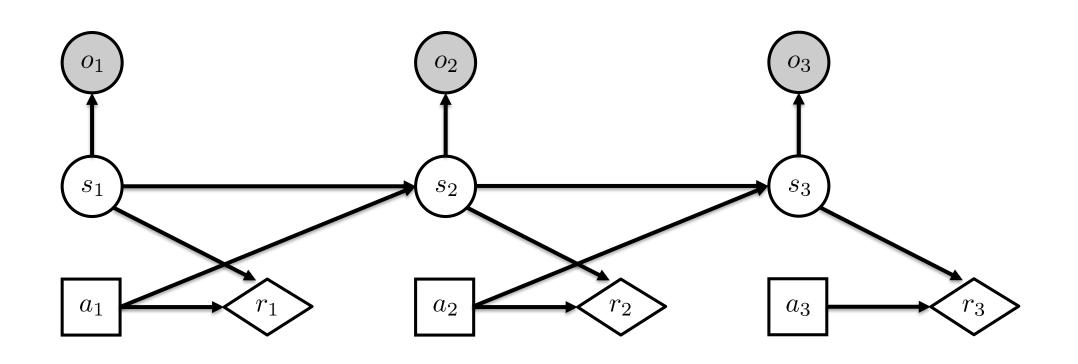
- One way: use truncated expectimax to compute approximate value of actions
- What if you only considered busting or one sense followed by a bust?
- You get a VPI-based agent!



Video of Demo Ghostbusters with VPI



POMDPs as Decision Networks



MDPs have: States S Actions A Transition function P(s' | s,a) (or T(s,a,s')) Rewards R(s,a,s')

POMDPs add:

Observations O
Observation function P(o|s) (or O(s,o))

POMDPs More Generally*

How can we solve POMDPs?

POMDP is MDP over belief b

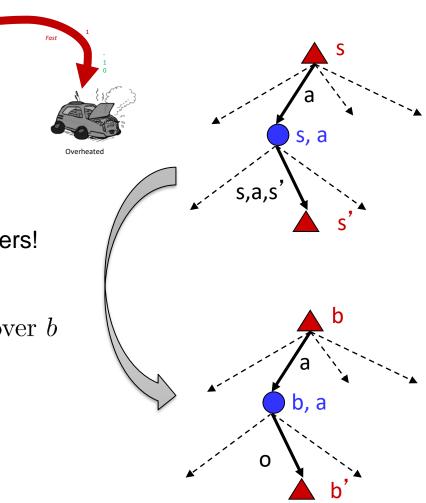
 $s \in \{\text{cool}, \text{warm}, \text{overheated}\}$

 $b \in [0,1]^3$ vector of three *continuous* numbers!

in principle, can run value iteration, policy iteration, etc. over b but...

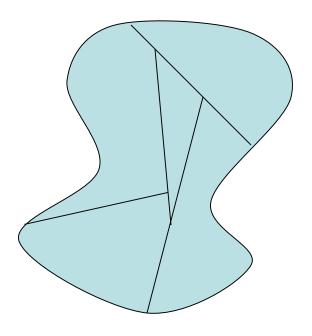
b is continuous (must discretize or use features)

b is very big (one number for each possible state)



POMDPs More Generally*

- General solutions map belief functions to actions
 - Can divide regions of belief space (set of belief functions) into policy regions (gets complex quickly)
 - Can build approximate policies
 - Can factor belief functions in various ways
- Overall, POMDPs are very (actually PSPACE-) hard
- Most real problems are POMDPs, but we can rarely solve then in general!



Up Next: Learning

- So far, we've seen...
- Search and decision making problems:
 - Search
 - Games
 - CSPs
 - MDPs
- Reasoning with uncertainty:
 - Bayes nets
 - HMMs, decision networks





Next week: learning!