CS 188: Artificial Intelligence

Discriminative Learning

DANGER

Prgul:;r a

Instructors: Sergey Levine and Stuart Russell --- University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel, Sergey Levine. All C5188 materials are at http://ai.berkeley.edu.]

Classification

Last Time

= (Classification: given inputs x,
predict labels (classes) y

.- 0 (9
HCn‘ﬁFy the Object:

A) Deg

®) Car

C) Box

P) Alligator

= Naive Bayes

P(Y|Fo0-..Fi515) x P(Y) || P(F;,;|Y)
1,]
= Parameter estimation:

: count
" MEE MAR, priors P (@) = total sarfnxp)les
= Laplace smoothing c(x) +k

Prapr(z) = N + FX]

" Training set, held-out set,
test set

Tuning

TWEAK-O - MAT\C 9000

Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns
= Parameters: the probabilities P(X|Y), P(Y)

» Hyperparameters: e.g. the amount / type of
smoothing to do, k, a

= What should we learn where?
" |Learn parameters from training data
= Tune hyperparameters on different data
= Why?

= For each value of the hyperparameters, train
and test on the held-out data

= Choose the best value and do a final test on
the test data

accuracy

training

held-out
test

Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

= For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

= The confidence of a probabilistic classifier:

Posterior over the top label

confidence(x) = myax P(y|x)

Represents how sure the classifier is of the
classification

Any probabilistic model will have confidences
No guarantee confidence is correct

= Calibration

Weak calibration: higher confidences mean
higher accuracy

Strong calibration: confidence predicts accuracy
rate

What’s the value of calibration?

accuracy accuracy

accuracy

:DDH

P(y|x)

:DDD_

P(y|x)

P(y|x)

Errors, and What to Do

= Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the regular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the

. To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click

What to Do About Errors?

Need more features— words aren’t enough!
= Have you emailed the sender before?
= Have 1K other people just gotten the same email?
= |s the sending information consistent?
= |sthe email in ALL CAPS?
= Do inline URLs point where they say they point?
= Does the email address you by (your) name?

O Made of Metal

Can add these information sources as new o am,og-mnu.r i
i I ri] WAarn
variables in the NB model vetrain

...but NB must model all of the features

Features often not independent, NB is not a
good model in this case

Error-Driven Classification

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

~
free
YOUR NAME
MISSPELLED
FROM FRIEND

~

PIXEL-7,12
PIXEL-7,13

NUM LOOPS

~

SPAM
or

”2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(x) = Zwi - filx) =w- f(x)

= |f the activation is: 5] W,
1
= Positive, output +1 ‘) W2 2 — >07 >
= Negative, output -1 7, ——

Weights

" Binary case: compare features to a weight vector

" Learning: figure out the weight vector from examples

- N
free : 4
YOUR_NAME =1
MISSPELLED 1

FROM FRIEND :-3 ?1}

J f(z1)

f(x2)

Dot product w - f positive
means the positive class

~

~

#

free

YOUR NAME
MISSPELLED

FROM FRIEND :

~

~

free
YOUR_NAME
MISSPELLED

FROM FRIEND :

PP 2o

Decision Rules

Binary Decision Rule

" |n the space of feature vectors
= Examples are points
= Any weight vector is a hyperplane

" One side corresponds to Y=+1
= QOther corresponds to Y=-1

>
Q 2
£
w +1 = SPAM

BIAS : -3 1

free : 4

money : 2 0

-1=HAM 0 1 froe

Weight Updates

Learning: Binary Perceptron

= Start with weights =0
" For each training instance:
= Classify with current weights

" |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights =0
" For each training instance:
= Classify with current weights

)+ i we f(x) >0
V-1 it w fz) <0

y*- f

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y"f

Examples: Perceptron

= Separable Case

a5
113

15 O
Lls O O
118

- 0] 1 b4 & - 3 3 4 &] []

Multiclass Decision Rule

= |f we have multiple classes:

= A weight vector for each class:
Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = argmax wy - f(x)
Y

w1y - f biggest
w1

w
wWo 3
w3z - f

wo - f .
biggest biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy- f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wy = wy — f(x)

Waept = Wy + f(z)

Example: Multiclass Perceptron

“win the vote”

“Win the election”

“win the game”

WSPORTS wWpOLITICS WTECH
BIAS 1 BIAS 0 BIAS : 0
win : 0 win : 0 win : 0
game : O game : 0 game : O
vote 0 vote 0 vote 0
the 0 the 0 the : 0

Properties of Perceptrons

. . . Separable
= Separability: true if some parameters get the training set P
perfectly correct .
- vy,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -

= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

. k -\ +
mistakes < 5—2

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

training
Overtraining: test / held-out >
accuracy usually rises, then falls ©
= Qvertraining is a kind of overfitting § test
© held-out

iterations

Improving the Perceptron

Probabilistic Classification

= Naive Bayes provides probabilistic classification

Answers the query: P(Y = y;|z1,...,2,)

1: 0.001
1: 0.001 2:0.703
2: 0.001
6: 0.264
0: 0.991

0: 0.001

= Perceptron just gives us a class prediction
= Can we get it to give us probabilities?
" Turns out it also makes it easier to train!

(13 L)

Note: I'm going to be lazy and use “x” in place of “f(x)” here — this is just for notational convenience!

A Probabilistic Perceptron

As w, - x gets bigger, P(y|z) gets bigger

A 1D Example

P(red|x)
| 19
S
[
=1 almost 1.0
£
Ry
|
I
I
I
I
almost 0.0 :
N I
o o o o—0 0 0 060 60 6 @ »
\ J \ J \ J L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially

eWred T as we move away from boundary

P(red|x) =

eWred'T L eWhlue'T + normalizer

The Soft Max

P(red|x) 5Wred

eOWred & + edWhlue T

6100wr8d s

elOOwred T 4 B100wblue T

« —— looks like max, wy, -

ewred "L

ewred X —|— ewblue L

O O o0 0 0 060 060600 @ >

ewred T

elljl"ed'$ —I— ewblue'x

P(red|z) =

How to Learn?

= Maximum likelihood estimation

Oprrr, = arg max P(X|0)
0

= arg max || Py(X;)
o

= Maximum conditional likelihood estimation
6* = arg max P(Y|X,0)

= Py (yi|zi
argmgLXH o (yilz;)

i J
|

) = [T 5, = Dy log) e
W) = Z eWy T; 7 Y
T Y

U(w) = Z log P (yi|4)

L.ocal Search

o Simple, general idea:
o Start wherever
o Repeat: move to the best neighboring state
o If no neighbors better than current, quit
o Neighbors = small perturbations of w

Our Status

o Our objective [] (w)

o Challenge: how to find a good w ?

max [(w)

o Equivalently:

min —/I(w)

1D optimization

o Could evaluate g(wg +h) and g(wo — h)

o Then step in best direction

o Or, evaluate derivative: 99(wo) _ y; 9(wo+h) — g{wo = 1)

ow h—0 2h

o Which tells which direction to step into

2-D Optimization

Source: Thomas Jungblut’s Blog

Steepest Descent

o Idea:
o Start somewhere
o Repeat: Take a step in the steepest descent direction

s 4 2 0 2 4 6 Figure source: Mathworks

Steepest Direction

o Steepest Direction = direction of the gradient

How to Learn?

U(w) = Zlog Py (yilz:)

(]
o Wy T4
_§:wy@'$i_log§:€y '
7 Y

- . Wy Tq f o)
d xz_%z , eyl Y=Y

o log Pu(yilzi) = e
wy i Ey! ey

otherwise

= z;(I(y = yi) — P(y|x;))

Optimization Procedure: Gradient Descent

initialize w (e.g., randomly) d

T log Py (yilzi) = z:(1(y = yi) — P(y|z;))

repeat for K iterations:
for each example (z;,¥;):
compute gradient A; = —V,, log Py, (y;|z;)
compute gradient V,,L = > A,

W+ w—aVyL

= «:learning rate --- tweaking parameter that needs to be chosen carefully
= How? Try multiple choices
= Crude rule of thumb: update should change w by about 0.1 -1 %

Stochastic Gradient Descent

initialize w (e.g., randomly d
() % tog P (k) = il I(y = vi) — Plylz)
repeat for K iterations: Y
for each example (z;,y;):
compute gradient A; = —V,, log P, (y;|;)
w— w — al\;
it y; = y, move w, toward z; if y; # y, move w, away from z;
. _ . _ compare this to the
with weight 1 — P(y;|x;) with weight P(y|z;) multiclass perceptron:
\ Y J — probabilistic weighting!

probability of incorrect answer probability of incorrect answer

Logistic Regression Demo!

https://playground.tensorflow.org/

