CS 188: Artificial Intelligence

Discriminative Learning

Instructors: Sergey Levine and Stuart Russell --- University of California, Berkeley

Classification

Last Time

 Classification: given inputs x, predict labels (classes) y

Naïve Bayes

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Parameter estimation:
 - MLE, MAP, priors $P_{\text{ML}}(x) = \frac{\text{count}(x)}{\text{total samples}}$
- Laplace smoothing $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- Training set, held-out set, test set

Tuning

Tuning on Held-Out Data

- Now we've got two kinds of unknowns
 - Parameters: the probabilities P(X|Y), P(Y)
 - Hyperparameters: e.g. the amount / type of smoothing to do, k, α
- What should we learn where?
 - Learn parameters from training data
 - Tune hyperparameters on different data
 - Why?
 - For each value of the hyperparameters, train and test on the held-out data
 - Choose the best value and do a final test on the test data

Baselines

- First step: get a baseline
 - Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

- The confidence of a probabilistic classifier:
 - Posterior over the top label

$$confidence(x) = \max_{y} P(y|x)$$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct
- Calibration
 - Weak calibration: higher confidences mean higher accuracy
 - Strong calibration: confidence predicts accuracy rate
 - What's the value of calibration?

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

- Need more features— words aren't enough!
 - Have you emailed the sender before?
 - Have 1K other people just gotten the same email?
 - Is the sending information consistent?
 - Is the email in ALL CAPS?
 - Do inline URLs point where they say they point?
 - Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- ...but NB must model all of the features
- Features often not independent, NB is not a good model in this case

Error-Driven Classification

Linear Classifiers

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1

Some (Simplified) Biology

Very loose inspiration: human neurons

Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1

Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Decision Rules

Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2

Weight Updates

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector

Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$

Examples: Perceptron

Separable Case

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$

Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg\max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$

$$w_{y^*} = w_{y^*} + f(x)$$

Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

w_{SPORTS}

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

$w_{POLITICS}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

w_{TECH}

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

Separable

Non-Separable

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting

Improving the Perceptron

Probabilistic Classification

Naïve Bayes provides probabilistic classification

Answers the query: $P(Y = y_i | x_1, \dots, x_n)$

- Perceptron just gives us a class prediction
 - Can we get it to give us probabilities?
 - Turns out it also makes it easier to train!

Note: I'm going to be lazy and use "x" in place of "f(x)" here – this is just for notational convenience!

A Probabilistic Perceptron

As $w_y \cdot x$ gets bigger, P(y|x) gets bigger

A 1D Example

The Soft Max

$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

How to Learn?

Maximum likelihood estimation

$$heta_{ML} = \arg\max_{\theta} P(\mathbf{X}|\theta)$$

$$= \arg\max_{\theta} \prod_{i} P_{\theta}(X_{i})$$

Maximum conditional likelihood estimation

$$\theta^* = \arg \max_{\theta} P(\mathbf{Y}|\mathbf{X}, \theta)$$

$$= \arg \max_{\theta} \prod_{i} P_{\theta}(y_i|x_i)$$

$$\ell(w) = \prod_{i} \frac{e^{w_{y_i} \cdot x_i}}{\sum_{y} e^{w_{y} \cdot x_i}}$$

$$\ell\ell(w) = \sum_{i} \log P_w(y_i|x_i)$$
$$= \sum_{i} w_{y_i} \cdot x_i - \log \sum_{y} e^{w_y \cdot x_i}$$

Local Search

Our Status

 \circ Our objective ll(w)

• Challenge: how to find a good *w* ?

o Equivalently:

$$\max_{w} ll(w)$$

$$\min_{w} -ll(w)$$

1D optimization

- \circ Could evaluate $g(w_0+h)$ and $g(w_0-h)$ \circ Then step in best direction
- o Or, evaluate derivative: $\frac{\partial g(w_0)}{\partial w} = \lim_{h \to 0} \frac{g(w_0 + h) g(w_0 h)}{2h}$
 - o Which tells which direction to step into

2-D Optimization

Steepest Descent

o Idea:

- o Start somewhere
- o Repeat: Take a step in the steepest descent direction

Figure source: Mathworks

Steepest Direction

Steepest Direction = direction of the gradient

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

How to Learn?

$$\ell\ell(w) = \sum_{i} \log P_w(y_i|x_i)$$
$$= \sum_{i} w_{y_i} \cdot x_i - \log \sum_{y} e^{w_y \cdot x_i}$$

$$\frac{d}{dw_y} \log P_w(y_i|x_i) = \begin{cases} x_i - x_i \frac{e^{w_y \cdot x_i}}{\sum_{y'} e^{w_{y'} \cdot x_i}} & \text{if } y = y_i \\ -x_i \frac{e^{w_y \cdot x_i}}{\sum_{y'} e^{w_{y'} \cdot x_i}} & \text{otherwise} \end{cases}$$

$$= x_i(I(y = y_i) - P(y|x_i))$$

Optimization Procedure: Gradient Descent

```
initialize w (e.g., randomly)
repeat for K iterations:

for each example (x_i, y_i):

compute gradient \Delta_i = -\nabla_w \log P_w(y_i|x_i)

compute gradient \nabla_w \mathcal{L} = \sum_i \Delta_i

w \leftarrow w - \alpha \nabla_w \mathcal{L}
```

$$\frac{d}{dw_y}\log P_w(y_i|x_i) = x_i(I(y=y_i) - P(y|x_i))$$

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - Crude rule of thumb: update should change w by about 0.1 1%

Stochastic Gradient Descent

initialize w (e.g., randomly)
repeat for K iterations:
for each example (x_i, y_i) :
compute gradient $\Delta_i = -\nabla_w \log P_w(y_i|x_i)$ $w \leftarrow w - \alpha \Delta_i$

$$\frac{d}{dw_y}\log P_w(y_i|x_i) = x_i(I(y=y_i) - P(y|x_i))$$

if
$$y_i = y$$
, move w_y toward x_i with weight $1 - P(y_i|x_i)$ probability of *incorrect* answer

if $y_i \neq y$, move w_y away from x_i with weight $P(y|x_i)$

compare this to the multiclass perceptron: probabilistic weighting!

probability of incorrect answer

Logistic Regression Demo!

https://playground.tensorflow.org/