Announcements

= HW10
= Due tonight!

= That is all.

CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructors: Sergey Levine and Stuart Russell --- University of California, Berkeley

[These slides were created by Dan Klein, Pieter Abbeel, Sergey Levine. All C5188 materials are at http://ai.berkeley.edu.]

Last Time

Axonal arborization

.- 0 (9
HCn‘ﬁFy the Object:

A) Deg

®) Car

C) Box

P) Alligator

\ Axon from another cell

Synapse

Dendrite Axon

Nucleus

\/

Synapses

Cell body or Soma

Last Time

" Linear classifier
= Examples are points
= Any weight vector is a hyperplane

= One side corresponds to Y=+1

= QOther corresponds to Y=-1 5
" Perceptron +1 < SPAM
= Algorithm for learning decision 1
boundary for linearly separable
data
-1 = HAM OO 1

free

Quick Aside: Bias Terms

f(x)
BIAS BIAS
free free
money money

= Why???

-1 =HAM

+1 = SPAM

free

Quick Aside: Bias Terms

f(x) w

Imagine 1D features, without bias term:

grade: 1 grade: 3.7

f P P'S o o—0—o o 0-0—0- o—— for which f(:l’:) 18 f(:E) -w > 07
grade = 0
f(x) w
With bias term: BIAS : 1 BIAS : -1.5
grade : 1 grade : 1.

for which f(z) is f(z) - w > 07

f(z) - w = wp + grade X w

A Probabilistic Perceptron

As w, - x gets bigger, P(y|z) gets bigger

A 1D Example

probability increases exponentially

e Wred T as we move away from boundary
P(red|z) = - .
eWred'T L eWblue' < normalizer
P(red|z)

| D
S
[

=1 almost 1.0
S
1
Ry

|
1
1
1
1
almost 0.0 :
—_— 1
- @ O —0 0 0 00 000 O
\ ' J \ ' J \ ' J L

definitely blue not sure definitely red

The Soft Max

ewred X

6wred L —|_ ewblue L

P(red|x) =

P(red|x) o5 Wred

eOWred T + eOWhlue T

6100wred -

elOOwred T 4 elOOwblue T

«————— looks like max, w,, - x

ewred T

ewred X —I_ ewblue L

0- ¥ 9 0 1 000000 @

How to Learn?

= Maximum likelihood estimation

Oprrr, = arg max P(X|0)
0

= arg max || Py(X;)
o

= Maximum conditional likelihood estimation
6* = arg max P(Y|X,0)

= Py (yi|zi
argmgLXH o (yilz;)

i J
|

) = [T 5, = Dy log) e
W) = Z eWy T; 7 Y
T Y

U(w) = Z log P (yi|4)

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\x(i);w)

oWy () f(z(D)

Zy ewy'f(i’?(i))

with: P(y® |z w) =

= Multi-Class Logistic Regression

Logistic Regression Demo!

https://playground.tensorflow.org/

Hill Climbing

= Recall from CSPs lecture: simple, general idea
= Start wherever
" Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

= What’s particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

1-D Optimization

= Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

dg(wo)

L . glwog+h)—glwyg —h
" Or, evaluate derivative: " Z}ILILI%) (wo)2h (wo — 1)

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

= E.g., consider: g(w,ws)

= Updates: = Updates in vector notation:

g
wl%wl"‘&*a—wl(wlawﬂ w — w ~+ a*x Vy,g(w)

dg

Wa — Wa + a * ——(wq, wa) with: V,g(w) = [85‘51 (w)] = gradient

8w2

Gradient Ascent

= |dea:
= Start somewhere

= Repeat: Take a step in the gradient direction

Figure source: Mathworks

What is the Steepest Direction?

max w -+ A ("%
A:AZHAZ<e 9l) -

First-Order Taylor Expansion:

Steepest Descent Direction:

.
. max A'a
Recall: AlTAT<e -

: V
Hence, solution: A=eg9

IVl

y-
dg dg
w+ A~ glw) + —A; + —A
q() = g(w) G T B
dg dg
A, gw) g ALt g A

a
A =c—
all

Gradient direction = steepest direction!

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

"= Init

= for 1ter =1, 2, ..

w — w~+ a*x Vg(w)

" «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w)

\ J

g(w)

" nit W

= for 1ter =1, 2, ..

w 4— w + a* Z V log P(y'9 |z w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for 1ter =1, 2,

" pick random 7

w < w+ a* Vlog Py |z\9): w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" lnlt w
= for i1ter = 1, 2,
" pick random subset of tralning examples J

W — W+ Q * ZVIogP(yU)\x(j);w)
jeJ

Gradient for Logistic Regression

00(w) = Zlog Py (yilz:) = Recall pe-rcep.tron: |
i = Classify with current weights

S S g e
) Yy
) Yy =
) if y =y,

+1 if w- f(x) >0

(eWy flz; .
y @) = @) =5 —1 if w- f(x) <O
—— log Py (yi]zi) = 4 cwyf () .
dw, —f(x;) o7y otherwise .
\ Diyre = |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
= f(z;))I(y = yi) — P(y|z;)) adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y" - f

How about computing all the derivatives?

= \We'll talk about that once we covered neural networks, which
are a generalization of logistic regression

Neural Networks

Multi-class Logistic Regression

= = special case of neural network

f,(x)

el

e*l + e*2 + e*3

z, > S }— Plulzw) =

f,(x)

e*2

e*l + e*2 + e*3

—— P(y2|z;w) =
f3(X)

<3

X 0 3 t Hh O

e

e*l + e*2 4 e*3

Zz3 | 1 P(ys|e; w) =

f(x)

Deep Neural Network = Also learn the features!

Tc1()()

eZ
2, TS — Py |z;w) = e*1l 4 e*2 + e3
f,(x) ©
f
2. —— T L Plplrw) =)
f5(x) 2 m el 4 e*2 + e*3
a
X e

Z3 | — P(ys|lz;w) = el & o2 1+ g%

fK(X)

Deep Neural Network = Also learn the features!

21 <1 1
(1) (2) .
Z5 Zs zé 1)
1 2 n—1
zé) Zé) Z;)
(1) (2) o
2 (1) 2 (2) 2,

k k—1,k) (k—1
5 =g Wiy VgY)

J

f,(x)

f,(x)

f3(x)

f(x)

AU s L P(yi]zw)

— P(yz\x;w)

(ouT)y
22

3 t Hh O

X
L0V = —— P(ys|z; w)

g = nonlinear activation function

Deep Neural Network = Also learn the features!

21 <1 1
(1) (2) .
Z5 Zs zé 1)
1 2 n—1
zé) Zé) Z;)
(1) (2) o
2 (1) 2 (2) 2,

k k—1,k) (k—1
5 =g Wiy VgY)

J

(n)
2 g (n)

AU s L P(yi]zw)

— P(yz\x;w)

(ouT)y
22

3 t Hh O

X
L0V = —— P(ys|z; w)

g = nonlinear activation function

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 . . 1 — 5 _
0.8} g"f;] | 0.5 | ?fi; | 41 3‘&
0.6 | : 3|
0
0.4} 2
0.2} -] | 1|
0 : -1 — ; 0 .
5 0 5 5 0 b -5 0
1 e’ —e™*
= = z)=max (0, z
9G@)= 70— 9@) = ———= g(z) (0,2)
()= 91— g(2) (2)= 1- 92 (D =10 otoris
g (z)= g(z)(1-g(2) g (z)=1-g(2) g — o0, otherwise

[source: MIT 6.5191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i”x(i);w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Neural Networks Properties

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting
= (hence early stopping!)

Neural Net Demo!

https://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables: © (@)=0) = [1og,u] = 1
dx dx det ¢ u dx
d
—(x)=1 d [I:Jg u]zlﬂg e L du
dx dx i "o dx
—f{ u) = a@ ig” E”dj
dx dx dlx dx
£{1f+1»'—w]=ﬁ+ﬁ—di ia a' lnc{rE
dx de de dx dx dx
¢ dv du _ . dv
—Un»}-u—+v— i[u‘)zw‘_'ﬁ+lnu u‘ﬂ
dx dx dx dx dx dx
d (;) 1 du u dv d . du
—| === —sinu = cosu—

dx vde v odx dx dx
i[u”} = "™ du icusu = —sinu du
d,r dx dx dx
1 du d s du
—{ —tlany = sec” u——
2'\ u dx dx dx
£(1)= _L?ﬂ d u:mrr=—::sc3ud”
dx\u u” dx dx dx
d(l ___n du isccu = sccutalmd—“
-:ix: H” Mu+l {f.l {!rx .::’,r
du d CsCu = —cscucotu du
['[”J'] = _[flu }] dx dx

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE:

f f(z) = g(h(x))
Then f'(x) = ¢ (h(z))h' (z)

— Derivatives can be computed by following well-defined procedures

Automatic Differentiation

" Automatic differentiation software
= e.g. Theano, TensorFlow, PyTorch, Chainer
= Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

" This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

" Need to know this exists
" How this is done? -- outside of scope of CS188

Summary of Key Ideas

= Optimize probability of label given input ~ max Il(w) = max Zlogp(y(i)lw(“;w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
= Last layer = still logistic regression

= Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
= Universal function approximation theorem
= If neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

= Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

Computer Vision

Object Detection

Manual Feature Design

Features and Generalization

!

L I ey SR e ’lN -

S *‘-s,,-.., i S ,’ .

A g B ey

~ J e

\
J
L
i
|
g
1
1
)
1
§
;
1
4

[HoG: Dalal and Triggs, 2005]

Features and Generalization

-
~
%
$ 3
s
X
»
1
et

Image HoG

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=
[3:}
v
< 40%
T
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=
[3:}
v
< 40%
T
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%%
o
[3:}
o
< 40%
T
20%
AlexNet
T%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%
2
[3:}
v
< 40%
L
20% E
AlexNet i B
7% s
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%
2
[3:}
v
< 40%
L
20% E
AlexNet i B
7% s
2010 2011 2012 2013 2014

graph credit Matt
Zeiler. Clarifai

MS COCO Image Captioning Challeng

‘man in black shirt is "construction worker in "two young girls are "boy is doing backflip on

playing guitar. orange safety vest is playing with lego toy." wakeboard.
working on road.’

3 T
» : o, f,
z v

S G

- e, 3 P

‘girl in pink dress is "black and white dog

‘man in blue wetsuit is
jumping in air.’ jumps over bar.’ swinging on swing.’ surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?
Neural Net: brown

Ground Truth: brown

How many school busses
are there?

Neural Net: 2

Ground. “Truth: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

What is on top of the
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent

Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai

Encoder

Decoder

Machine Translation

Google Neural Machine Translation (in production)

€o —, e -~ e2 . e —_— €4 S —T es ——

