

- Search
- Constraint Satisfaction Problems

- Search
- Constraint Satisfaction Problems
- Games

- Search
- Constraint Satisfaction Problems
- Games
- Markov Decision Problems

- Search
- Constraint Satisfaction Problems
- Games
- Markov Decision Problems
- Reinforcement Learning

- Search
- Constraint Satisfaction Problems
- Games
- Markov Decision Problems
- Reinforcement Learning

We've seen how AI methods can solve problems in:

- Search
- Constraint Satisfaction Problems
- Games
- Markov Decision Problems
- Reinforcement Learning

Next up: Part II: Uncertainty and Learning!

We're done with Part I Search and Planning!

We're done with Part I Search and Planning!

Part II: Probabilistic Reasoning

Diagnosis

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
 - Tracking objects

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
 - Tracking objects
- Robot mapping

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

We're done with Part I Search and Planning!

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

We're done with Part I Search and Planning!

Part II: Probabilistic Reasoning

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Part III: Machine Learning

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence

Probability

Random Variables

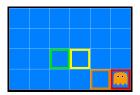
- Random Variables
- Joint and Marginal Distributions i

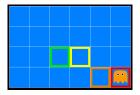
- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution

- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule

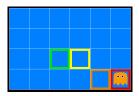
- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference

- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence

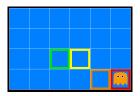

- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence



Probability

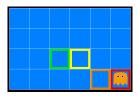

- Random Variables
- Joint and Marginal Distributions i
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence

You'll need all this stuff A LOT for the next few weeks, so make sure you get this!


A ghost is in the grid somewhere

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost


On the ghost: red

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost


- On the ghost: red
- 1 or 2 away: orange

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost


- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow

A ghost is in the grid somewhere

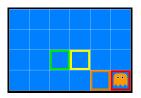
Sensor readings tell how close a square is to the ghost


- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost

- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

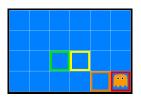


A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost

- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

Sensors are noisy, but we know *P*(*Color*|*Distance*)


A ghost is in the grid somewhere

Sensor readings tell how close a square is to the ghost

- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

Sensors are noisy, but we know *P*(*Color*|*Distance*)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

A ghost is in the grid somewhere

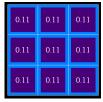
Sensor readings tell how close a square is to the ghost

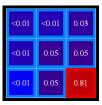
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

Sensors are noisy, but we know P(Color|Distance)

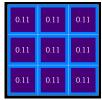
P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

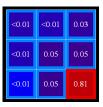
[Demo: Ghostbuster - no probability (L12D1)]


Video of Demo Ghostbuster – No probability

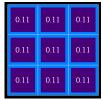

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

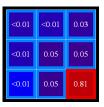

<0.01	<0.01	0.03
<0.01	0.05	0.05
<0.01	0.05	0.81


0.17 0.10 0.10 0.09 0.17 0.10 <0.01</td> 0.09 0.17

General situation:

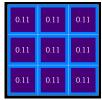


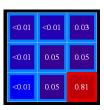
0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17



General situation:

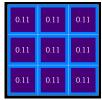
• **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)


0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

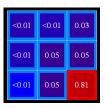

General situation:

• **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)

• **Unobserved variables:** Agent needs to reason about other aspects (e.g. where an object is or what disease is present)



0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17



General situation:

- **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- **Unobserved variables:** Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- **Model:** Agent knows something about how the known variables relate to the unknown variables

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

General situation:

- **Observed variables (evidence):** Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- **Unobserved variables:** Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- **Model:** Agent knows something about how the known variables relate to the unknown variables

Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

A random variable is some aspect of the world about which we (may) have uncertainty

A random variable is some aspect of the world about which we (may) have uncertainty

• R = Is it raining?

A random variable is some aspect of the world about which we (may) have uncertainty

R = Is it raining? *T* = Is it hot or cold?

A random variable is some aspect of the world about which we (may) have uncertainty

- R =Is it raining?
- *T* = Is it hot or cold?
- D = How long will it take to drive to work?

A random variable is some aspect of the world about which we (may) have uncertainty

- R =Is it raining?
- T =Is it hot or cold?
- D = How long will it take to drive to work?
- *L* = Where is the ghost?

A random variable is some aspect of the world about which we (may) have uncertainty

- R =Is it raining?
- T =Is it hot or cold?
- D = How long will it take to drive to work?
- *L* = Where is the ghost?

A random variable is some aspect of the world about which we (may) have uncertainty

- R = Is it raining?
- T = Is it hot or cold?
- D = How long will it take to drive to work?
- L = Where is the ghost?

We denote random variables with capital letters

A random variable is some aspect of the world about which we (may) have uncertainty

- R = Is it raining?
- T = Is it hot or cold?
- D = How long will it take to drive to work?
- L = Where is the ghost?

We denote random variables with capital letters

Like CSP, variables (random) have domains

• $R \in \{true, false\}$ (often write as $\{+r, -r\}$)

A random variable is some aspect of the world about which we (may) have uncertainty

- R = Is it raining?
 - T =Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?

We denote random variables with capital letters

Like CSP, variables (random) have domains

- $R \in \{true, false\}$ (often write as $\{+r, -r\}$)
- *T* ∈ {*hot*, *cold*}

A random variable is some aspect of the world about which we (may) have uncertainty

- R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?

We denote random variables with capital letters

Like CSP, variables (random) have domains

- $R \in \{true, false\}$ (often write as $\{+r, -r\}$)
- *T* ∈ {*hot*, *cold*}
- *D* ∈ [0,∞]

A random variable is some aspect of the world about which we (may) have uncertainty

- R = Is it raining?
- T = Is it hot or cold?
- D = How long will it take to drive to work?
- L = Where is the ghost?

We denote random variables with capital letters

Like CSP, variables (random) have domains

- $R \in \{true, false\}$ (often write as $\{+r, -r\}$)
- *T* ∈ {*hot*, *cold*}
- *D* ∈ [0,∞]
- L in possible locations, maybe {(0,0),(0,1),...}

Associate a probability with each value

Associate a probability with each value

• Temperature:

Associate a probability with each value

• Temperature:

Associate a probability with each value

• Temperature:

P(T)

Associate a probability with each value

• Temperature:

Associate a probability with each value

cold

• Temperature:

0.5

• Weather:

Associate a probability with each value

cold

• Temperature:

0.5

• Weather:

Associate a probability with each value

• Temperature:

• Weather:

P(W)

Associate a probability with each value

cold

• Temperature:

0.5

Weather:

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

$$P(hot) = P(T = hot)$$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

$$P(hot) = P(T = hot)$$

 $P(cold) = P(T = cold)$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

If domains don't overlap.

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

If domains don't overlap.

A probability (lower case value) is a single number:

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

If domains don't overlap.

A probability (lower case value) is a single number:

$$P(W = rain) = 0.1.$$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$\begin{split} P(hot) &= P(T = hot) \\ P(cold) &= P(T = cold) \\ P(rain) &= P(W = rain) \end{split}$$

If domains don't overlap.

A probability (lower case value) is a single number:

P(W = rain) = 0.1.

A distribution is a TABLE of probabilities of values:

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$P(hot) = P(T = hot)$$

$$P(cold) = P(T = cold)$$

$$P(rain) = P(W = rain)$$

If domains don't overlap.

A probability (lower case value) is a single number:

P(W = rain) = 0.1.

A distribution is a TABLE of probabilities of values:

Must have: $\forall x, P(X = x) \ge 0$,

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$P(hot) = P(T = hot)$$

$$P(cold) = P(T = cold)$$

$$P(rain) = P(W = rain)$$

If domains don't overlap.

A probability (lower case value) is a single number:

P(W = rain) = 0.1.

A distribution is a TABLE of probabilities of values:

Must have: $\forall x, P(X = x) \ge 0$, and $\sum_{x} P(X = x)$

Unobserved random variables have distributions:

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

. . .

$$P(hot) = P(T = hot)$$

$$P(cold) = P(T = cold)$$

$$P(rain) = P(W = rain)$$

If domains don't overlap.

A probability (lower case value) is a single number:

P(W = rain) = 0.1.

A distribution is a TABLE of probabilities of values:

Must have: $\forall x, P(X = x) \ge 0$, and $\sum_{x} P(X = x) = 1$.

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

• Must obey:

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

Must obey:

$$P(x_1, x_2, \ldots, x_n) \geq 0$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

• Must obey:

$$P(x_1, x_2, ..., x_n) \ge 0$$

 $\sum_{x_1, x_2, ..., x_n} P(x_1, x_2, ..., x_n) = 1$

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

• Must obey:

$$P(x_1, x_2, ..., x_n) \ge 0$$

 $\sum_{x_1, x_2, ..., x_n} P(x_1, x_2, ..., x_n) = 1$

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

• Must obey:

 $P(x_1, x_2, ..., x_n) \ge 0$ $\sum_{x_1, x_2, ..., x_n} P(x_1, x_2, ..., x_n) = 1$

Size of distribution if n variables with domain sizes d?

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

Must obey:

 $P(x_1, x_2, ..., x_n) \ge 0$ $\sum_{x_1, x_2, ..., x_n} P(x_1, x_2, ..., x_n) = 1$

Size of distribution if n variables with domain sizes d? dⁿ

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

Must obey:

 $P(x_1, x_2, \ldots, x_n) \geq 0$

 $\sum_{x_1,x_2,\ldots,x_n} P(x_1,x_2,\ldots,x_n) = 1$

Size of distribution if n variables with domain sizes d? d^n

For all but the smallest distributions, impractical to write out!

Set of random variables: X_1, \ldots, X_n Joint Distribution:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$$

or $P(x_1, x_2, ..., x_n)$.

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Same table:

W×T	hot	cold
sun	0.4	0.2
rain	0.1	0.3

Must obey:

 $P(x_1, x_2, \ldots, x_n) \geq 0$

 $\sum_{x_1,x_2,\ldots,x_n} P(x_1,x_2,\ldots,x_n) = 1$

Size of distribution if n variables with domain sizes d? d^n

For all but the smallest distributions, impractical to write out!

A probabilistic model is a joint distribution over a set of random variables

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

• (Random) variables with domains

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

Normalized: sum to 1.0

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Distribution over T,W

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Constraint satisfaction problems:

Variables with domains

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraints over T,W

A probabilistic model is a joint distribution over a set of random variables

Probabilistic models:

- (Random) variables with domains
- Assignments are called outcomes
- Joint distributions:

frequency of assignments (outcomes)

- Normalized: sum to 1.0
- Ideally:

only certain variables directly interact

Constraint satisfaction problems:

- Variables with domains
- Constraints: state whether assignments are possible
- Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraints over T,W

Т	W	Ρ
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

An event is a set E of outcomes:

Events

An event is a set E of outcomes:

 $P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$

Events

An event is a set E of outcomes:

 $P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any eventProbability that it's hot AND sunny?

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

Typically, the events we care about are partial assignments: examples: P(T = hot). P(W = sun).

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

Typically, the events we care about are partial assignments: examples: P(T = hot). P(W = sun). P(hot)

An event is a set E of outcomes:

$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

From a joint distribution, we can calculate the probability of any event

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

Typically, the events we care about are partial assignments: examples: P(T = hot). P(W = sun).

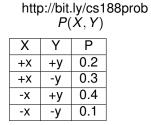
P(hot) = P(hot, sun) + P(hot, rain)

An event is a set E of outcomes:

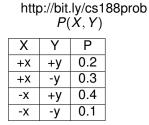
$$P(E) = \sum_{(x_1,\ldots,x_n)\in E} P(x_1,\ldots,x_n).$$

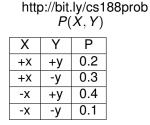
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

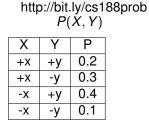
From a joint distribution, we can calculate the probability of any event

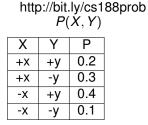

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?

Typically, the events we care about are partial assignments: examples: P(T = hot). P(W = sun).


P(hot) = P(hot, sun) + P(hot, rain) = .5


 $\begin{array}{c} \text{http://bit.ly/cs188prob} \\ P(X,Y) \end{array}$


P(+x,+y) ?


P(+x,+y) ? .2

P(+x,+y) ? .2 P(+x) ?

P(+x,+y)? .2 P(+x)? 0.2 + 0.3

P(+x,+y)? .2 P(+x)? 0.2 + 0.3 = 0.5

	http://bit.ly/cs188prob P(X, Y)			
	Х	Y	Р	
ĺ	+X	+у	0.2	
ĺ	+X	-у	0.3	
	-X	+у	0.4	
	-X	-у	0.1	

P(+x,+y)? .2 P(+x)? 0.2 + 0.3 = 0.5 $P(-y \ OR + x's)$?

http://bit.ly/cs188prob P(X, Y)			
Х	Y	Р	
+X	+у	0.2	
+X	-у	0.3	
-X	+у	0.4	
-X	-у	0.1	

$$P(+x,+y)$$
? .2
 $P(+x)$? 0.2 + 0.3 = 0.5
 $P(-y OR + x's)$?
 $P(+x,-y) + P(+x,+y) + P(+x,-y)$

http://bit.ly/cs188prob P(X, Y)			
Х	Y	Р	
+X	+у	0.2	
+X	-у	0.3	
-X	+у	0.4	
-X	-у	0.1	

$$P(+x,+y)$$
? .2
 $P(+x)$? 0.2 + 0.3 = 0.5
 $P(-y \ OR + x's)$?
 $P(+x,-y) + P(+x,+y) + P(+x,-y) = 0.6$

Marginal distributions are sub-tables which eliminate variables

Marginal distributions are sub-tables which eliminate variables

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal distributions are sub-tables which eliminate variables Marginal for Temparature.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal distributions are sub-tables which eliminate variables

Marginal for Temparature.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	

Marginal distributions are sub-tables which eliminate variables

Marginal for Temparature.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	

Marginal distributions are sub-tables which eliminate variables

Marginal for Temparature.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	0.5

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

-	
Т	Р
hot	0.5
oold	05

Marginal for Temparature.

Arginal for Weather.

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р	
hot	0.5	
cold	0.5	
Margin	al for \	Weather.

Marginal for Temparature.

W	Р
rain	

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal for Temparature.

Т	Ρ	
hot	0.5	
cold	0.5	
Margin	al for \	Weather.

W	Р
rain	0.4
sun	

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	0.5

Marginal for Temparature.

Marginal for Weather.

W	Р
rain	0.4
sun	0.6

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

[Т	Р	
Ì	hot	0.5	
	cold	0.5	
Ì	Marginal for Weather.		

Marginal for Temparature.

W	Р
rain	0.4
sun	0.6

Marginalization (summing out): Combine collapsed rows by adding.

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р	
hot	0.5	
cold	0.5	
Marginal for Weather.		

Marginal for Temparature.

W	Р
rain	0.4
sun	0.6

Marginalization (summing out): Combine collapsed rows by adding.

Same idea

$W \times T$	hot	cold	M(W)
sun	0.4	0.2	0.6
rain	0.1	0.3	0.4
M(T)	0.5	0.5	

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р	
hot	0.5	
cold	0.5	
Marginal for Weather.		

Marginal for Temparature.

W	Р
rain	0.4
sun	0.6

Marginalization (summing out): Combine collapsed rows by adding.

Same idea

$W \times T$	hot	cold	M(W)
sun	0.4	0.2	0.6
rain	0.1	0.3	0.4
M(T)	0.5	0.5	

Marginal distributions are sub-tables which eliminate variables

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р	
hot	0.5	
cold	0.5	
Marginal for Weather.		

Marginal for Temparature.

W	Р
rain	0.4
sun	0.6

Marginalization (summing out): Combine collapsed rows by adding.

Same idea

$W \times T$	hot	cold	M(W)
sun	0.4	0.2	0.6
rain	0.1	0.3	0.4
M(T)	0.5	0.5	

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

http://bit.ly/cs188prob

P(X)

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

http://bit.ly/cs188prob

P(X)		
Х	Р	
+X		

X	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

http://bit.ly/cs188prob

P(X)			
	Х	Р	
	+X	0.5	

Х	Y	Ρ
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(X)

ſ	Х	Р
	+X	0.5
	-X	

· · /

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

Х	Р
+X	0.5
-X	0.5

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(X) X P +x 0.5

-x 0.5 P(Y)

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(X) X P +x 0.5 -x 0.5 P(Y)

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(X) X P +x 0.5 -x 0.5 P(Y)

> P 0.6

Y

+y

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(X)

Х	Р
+X	0.5
-X	0.5

P()	()
-----	----

Y	Р
+у	0.6
-у	

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

 $\mathsf{P}(\mathsf{X})$

Х	Р
+X	0.5
-X	0.5

Y	Р
+у	0.6
-у	0.4

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

 $\mathsf{P}(\mathsf{X})$

Х	Р
+X	0.5
-X	0.5

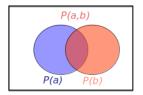
Y	Р
+у	0.6
-у	0.4

A simple relation between joint and conditional probabilities

A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of a conditional probability

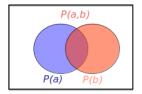
A simple relation between joint and conditional probabilities


• In fact, this is taken as the definition of a conditional probability

A simple relation between joint and conditional probabilities

• In fact, this is taken as the definition of a conditional probability

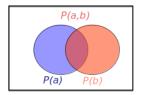
A simple relation between joint and conditional probabilities


In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

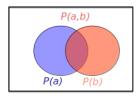


The probability of event *a* given event *b*.

P(a|b)

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

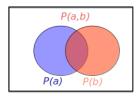


The probability of event *a* given event *b*.

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability


The probability of event *a* given event *b*.

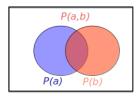
 $P(a|b) = rac{P(a,b)}{P(b)}$

Probability of a given b.

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

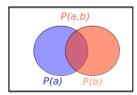

 $P(a|b) = rac{P(a,b)}{P(b)}$

Probability of a given b.

Natural?

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability



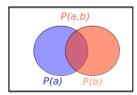
The probability of event *a* given event *b*.

 $P(a|b) = \frac{P(a,b)}{P(b)}$ Probability of a given b.

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.


 $P(a|b) = \frac{P(a,b)}{P(b)}$

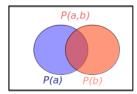
Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.


 $P(a|b) = \frac{P(a,b)}{P(b)}$ Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$

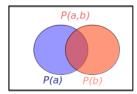
A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

 $P(a|b) = \frac{P(a,b)}{P(b)}$

Probability of a given b.


Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$

$$P(T = c) = P(W = s, T = c) + P(W = r, T = c)$$

A simple relation between joint and conditional probabilities

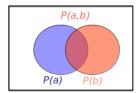
In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

 $P(a|b) = \frac{P(a,b)}{P(b)}$

Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3


$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$

$$P(T = c) = P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3$$

A simple relation between joint and conditional probabilities

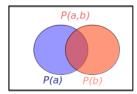
In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

 $P(a|b) = rac{P(a,b)}{P(b)}$

Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3


$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$

$$P(T = c) = P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

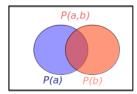
The probability of event *a* given event *b*.

 $P(a|b) = \frac{P(a,b)}{P(b)}$

Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$


$$P(T = c) = P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}$$

A simple relation between joint and conditional probabilities

In fact, this is taken as the definition of a conditional probability

The probability of event *a* given event *b*.

 $P(a|b) = rac{P(a,b)}{P(b)}$

Probability of a given b.

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}.$$

$$P(T = c) = P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)} = \frac{2}{.5} = 2/5.$$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

http://bit.ly/cs188prob

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

P(+x|+y) ?

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y)$$
 ? $\frac{P(+x,+y)}{P(+y)}$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y)$$
? $\frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y)$$
? $\frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$
 $P(-x|+y)$?

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y)$$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y) = \frac{2}{3}.$$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y) = \frac{2}{3}.$$

$$P(-y|+x) ?$$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y) = \frac{2}{3}.$$

$$P(-y|+x) ? = \frac{P(-y,+x)}{P(+x)}$$

Х	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y) = \frac{2}{3}.$$

$$P(-y|+x) ? = \frac{P(-y,+x)}{P(+x)} = \frac{.3}{.5}$$

Quiz: Conditional Probabilities

http://bit.ly/cs188prob

X	Y	Р
+X	+у	0.2
+X	-у	0.3
-X	+у	0.4
-X	-у	0.1

$$P(+x|+y) ? \frac{P(+x,+y)}{P(+y)} = \frac{.2}{.6} = 1/3$$

$$P(-x|+y) ? = 1 - P(+x|+y) = \frac{2}{3}.$$

$$P(-y|+x) ? = \frac{P(-y,+x)}{P(+x)} = \frac{.3}{.5} = 3/5$$

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional distributions are probability distributions over some variables given fixed values of others

Joint Distribution		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution		
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution		
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

W	Р
sun	0.8
cold	0.2

Joint	Distr	ibut	ion
T	L L	N /	Р

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

W	Р
sun	0.8
cold	0.2

$$P(W|T = cold)$$

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

W	Р
sun	0.8
cold	0.2

$$P(W|T = cold)$$

W	Р
sun	0.4
cold	0.6

Join	t D	istr	ibι	utic	n
		1	A /		0

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Joint Distribution				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

$$P(W = s | T = c) = \frac{P(w = s, T = c)}{P(T = c)}$$
$$= \frac{.2}{P(T = c)}.$$

_Joint E	Distribu	tion	$P(W = s T = c) = \frac{P(w=s,T=c)}{P(T=c)}$ $= \frac{2}{P(T=c)}.$
T	W	P	P(T=c) = P(W=s, T=c) + P(W=r, T=c)
hot	sun	0.4	= 0.2 + 0.3
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

Joint D		tion	$P(W = s T = c) = \frac{P(w=s,T=c)}{P(T=c)}$ $= \frac{2}{P(T=c)}.$
	W	P	P(T = c) = P(W = s, T = c) + P(W = r, T = c)
hot	sun	0.4	= 0.2 + 0.3 = 0.5
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

			$P(W = s T = c) = \frac{P(w = s, T = c)}{P(T = c)}$
Joint D	Distribu	tion	$= \frac{2}{P(T=c)}.$
Т	W	Р	P(T=c) = P(W=s, T=c) + P(W=r, T=c)
hot	sun	0.4	= 0.2 + 0.3 = 0.5
hot	rain	0.1	$P(W = r T = h) = \frac{P(w = r, T = h)}{P(T = c)}$
cold	sun	0.2	$=\frac{.3}{P(T=c)}.$
cold	rain	0.3	

Joint Distribution $P(W = s T = c) = \frac{P(w = s, T = c)}{P(T = c)}$					
T	W	P	$=\frac{2}{P(T=c)}.$		
hot	sun	0.4	P(T = c) = P(W = s, T = c) + P(W = r, T = c) = 0.2 + 0.3 = 0.5		
hot	rain	0.1	$P(W=r T=h) = \frac{P(w=r,T=h)}{P(T=c)}$		
cold	sun	0.2	$= \frac{.3}{P(T=c)}.$		
cold	rain	0.3	P(T = c) = P(W = s, T = c) + P(W = r, T = c)		
			= 0.2 + 0.3		

			$P(W=s T=c) = \frac{P(W=s,T=c)}{P(T=c)}$	
Joint [<u> Distribu</u>	tion	$=\frac{2}{P(T=c)}$.	
I	W	P	P(T = c) = P(W = s, T = c) + P(W = r, T = c)	P(W T = cold)
hot	sun	0.4	= 0.2 + 0.3 = 0.5	
hot	rain	0.1	$P(W = r T = h) = \frac{P(w = r, T = h)}{P(T = c)}$	
cold	sun	0.2	$=\frac{3}{P(T=c)}$.	
cold	rain	0.3	P(T = c) = P(W = s, T = c) + P(W = r, T = c)	
			= 0.2 + 0.3 = 0.5	

			$P(W = s T = c) = \frac{P(w = s, T = c)}{P(T = c)}$		
Joint L	<u> Distribu</u>	tion	$=\frac{2}{P(T=c)}$.		
	W	P	P(T = c) = P(W = s, T = c) + P(W = r, T = c)	P(W T)	= cold
hot	sun	0.4	$\begin{bmatrix} r(1-c) - r(w-s, 1-c) + r(w-1, 1-c) \\ = 0.2 + 0.3 = 0.5 \end{bmatrix}$	W	P
hot	rain	0.1	$P(W=r T=h) = \frac{P(w=r,T=h)}{P(T=c)}$		0.4
cold	sun	0.2	$= \frac{3}{P(T=c)}.$	sun	
cold	rain	0.3	P(T=c) = P(W=s, T=c) + P(W=r, T=c)	cold	0.6
			= 0.2 + 0.3 = 0.5		

Why does normalization work?

Why does normalization work? Answer: Work it out! Why does normalization work? Answer: Work it out! Will discuss on Monday, Why does normalization work? Answer: Work it out! Will discuss on Monday, Have a nice weekend!