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Inference in Ghostbusters

A ghost is in the grid somewhere

Sensor readings tell how close a square is to the
ghostt On the ghost: redt 1 or 2 away: oranget 3 or 4 away: yellowt 5+ away: green

Sensors are noisy, but we know P(Color |Distance)

P(red |3) P(orange|3) P(yellow |3) P(green|3)
0.05 0.15 0.5 0.3

[Demo: Ghostbuster – no probability (L12D1) ]
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Video of Demo Ghostbuster – No probability



Uncertainty

General situation:t Observed variables (evidence): Agent
knows certain things about the state of the world
(e.g., sensor readings or symptoms)t Unobserved variables: Agent needs to
reason about other aspects (e.g. where an
object is or what disease is present)tModel: Agent knows something about how the
known variables relate to the unknown variables

Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge
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Random Variables

A random variable is some aspect of the world
about which we (may) have uncertaintyt R = Is it raining?t T = Is it hot or cold?t D = How long will it take to drive to work?t L = Where is the ghost?

We denote random variables with capital letters

Like CSP, variables (random) have domainst R ∈ {true, false} (often write as {+r ,−r})t T ∈ {hot ,cold}t D ∈ [0,∞]t L in possible locations, maybe {(0,0),(0,1), . . .}
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Probability Distributions

Associate a probability with each value

t Temperature:

P(T )

T P
hot 0.5
cold 0.5

t Weather: P(W )

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0
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Probability Distributions

Unobserved random variables
have distributions:

T P
hot 0.5
cold 0.5

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot)
P(cold) = P(T = cold)
P(rain) = P(W = rain)
. . .

If domains don’t overlap.

A probability (lower case value) is a single number:

P(W = rain) = 0.1.

A distribution is a TABLE of probabilities of values:

Must have: ∀x ,P(X = x)≥ 0,
and ∑x P(X = x) = 1.
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Probabilistic Models

A probabilistic model is a joint distribution over a set of random
variables

Probabilistic models:t (Random) variables with domainst Assignments are called outcomest Joint distributions:
frequency of assignments (outcomes)t Normalized: sum to 1.0t Ideally:
only certain variables directly interact

Distribution
over T,W

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Constraint satisfaction problems:t Variables with domainst Constraints: state whether assignments
are possiblet Ideally: only certain variables directly
interact

Constraints
over T,W

T W P
hot sun T
hot rain F
cold sun F
cold rain T
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Events

An event is a set E of outcomes:

P(E) = ∑(x1,...,xn)∈E P(x1, . . . ,xn).

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

From a joint distribution, we can calculate the probability of any eventt Probability that it’s hot AND sunny?t Probability that it’s hot?t Probability that it’s hot OR sunny?

Typically, the events we care about are partial assignments:
examples: P(T = hot). P(W = sun).

P(hot) = P(hot ,sun)+P(hot , rain) = .5
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Quiz: Events

http://bit.ly/cs188prob
P(X ,Y )

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

P(+x ,+y) ? .2

P(+x) ? 0.2 + 0.3 = 0.5

P(−y OR +x ′s) ?
P(+x,-y) + P(+x,+y) + P(+x,-y) = 0.6
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Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

P(T ,W )

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Marginal for Temparature.

T P
hot 0.5
cold 0.5

Marginal for Weather.

W P
rain 0.4
sun 0.6

Marginalization (summing out): Combine collapsed rows by adding.

Same idea

W × T hot cold M(W)
sun 0.4 0.2 0.6
rain 0.1 0.3 0.4
M(T) 0.5 0.5
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Conditional Probabilities

A simple relation between joint and conditional probabilities

t In fact, this is taken as the definition of a conditional probability

The probability of event a given event b.

P(a|b) = P(a,b)
P(b)

Probability of a given b.

Natural? Yes!

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(W = s|T = c) = P(w=s,T=c)
P(T=c) .

P(T = c) = P(W = s,T = c)+P(W = r ,T = c)
= 0.2+0.3 = 0.5

P(W = s|T = c) = P(w=s,T=c)
P(T=c) = .2

.5 = 2/5.
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Quiz: Conditional Probabilities
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Conditional Distributions

Conditional distributions are probability distributions over some
variables given fixed values of others
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Normalization Trick
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Why does normalization work?

Answer: Work it out!

Will discuss on Monday,

Have a nice weekend!
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