CS188: Announcements

Self Grade Drop: You have 1 for the semester.
See Piazza
Homework due tonight.
Project 3 on Friday.
Discussing new attendance policy.

Conditional probability: \(P(x|y) = \frac{P(x,y)}{P(y)} \).

Product rule: \(P(x,y) = P(x|y)P(y) \).

Bayes Rule: \(P(y|x) = \frac{P(x|y)P(y)}{P(x)} \).

Chain rule:
\[
P(x_1, x_2, \ldots, x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)\ldots \\
= \prod_{i=1}^{n} P(x_i|x_1, \ldots, x_{i-1}).
\]

\(X, Y \) independent if and only if: \(\forall x, y : P(x, y) = P(x)P(y) \).

\(X \) and \(Y \) are conditionally independent given \(Z \) if and only if:
\[
\forall x, y, z : P(x, y|z) = P(x|z)P(y|z).
\]
Ghostbusters Chain Rule

[Demo: Ghostbuster – with probability (L12D2)]

Each sensor depends only on where the ghost is.

That means, the two sensors are conditionally independent, given the ghost position.

T: Top square is red.

B: Bottom square is red.

G: Ghost is in the top.

Givens:

\[
\begin{align*}
&P(+g) = 0.5 \\
&P(-g) = 0.5 \\
&P(+t | +g) = 0.8 \\
&P(+t | -g) = 0.4 \\
&P(+b | +g) = 0.4 \\
&P(+b | -g) = 0.8 \\
\end{align*}
\]

\[
P(T, B, G) = P(G)P(T|G)P(B|G)
\]
Bayes’Nets: Big Picture

Bayes’ Nets: Big Picture

Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For now, we’ll be vague about how these interactions are specified
Example Bayes’ Net: Insurance
Example Bayes’ Net: Car
Ghostbusters Bayes Net
Graphical Model Notation

Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)

Arcs: interactions
- Similar to CSP constraints
- Indicate “direct influence” between variables
- Formally: encode conditional independence (more later)

For now: imagine that arrows mean direct causation (in general, they don’t!)
Example: Coin Flips

N independent coin flips
No interactions between variables: absolute independence

$X_1 \quad X_2 \quad \ldots \quad X_n$
Example: Traffic

Variables:
- R: It rains
- T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?
Example: Traffic II

Let's build a causal graphical model!

Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Diagram:
- Traffic
- Rain
- Ballgame
- Drips
- Cavity
- Low Pressure

Connections:
- Low Pres → Rain
- Low Pres → Ballgame
- Rain → Traffic
- Rain → Drips
- Ballgame → Traffic
- Ballgame → Drips
- Traffic → Cavity
- Drips → Cavity
Example: Alarm Network

Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Diagram:
- Burglary
- Earthquake
- Alarm
- John calls
- Mary calls
Bayes’ Net Semantics
Bayes’ Net Semantics

A set of nodes, one per variable X
A directed, acyclic graph
A conditional distribution for each node

- A collection of distributions over X, one for each combination of parents’ values
- CPT: conditional probability table
- Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Probabilities in Bayesnets

Bayes’ nets implicitly encode joint distributions

- As a product of local conditional distributions
 \[P(x_1, \ldots, x_n) = \prod_i \Pr(x_i|\text{Parents}(X_i)) \]

- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, \ldots, x_n) = \prod_i \Pr(x_i|\text{Parents}(X_i)) \]

Example:
\[
\Pr(G = b|T = r, B = r) = \Pr(G = r|T = r) \Pr(S = s|B = r)
\]
\[
\Pr(G = b|T = r, B = r) = \Pr(G = r|T = r, B = r) \Pr(S = s|B = r)
\]
Why are we guaranteed that setting results is joint distribution?

Chain rule (valid for all distributions):

\[P(x_1, \ldots, x_n) = \prod_i P(x_i | x_1, \ldots, x_i) \]

Assume conditional independences:

\[P(x_1, \ldots, x_n) = \prod_i P(x_i | \text{parents}(X_i)) \]

Consequence: Not every BN can represent every joint distribution.

- The topology enforces certain conditional independencies!
Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.
Example: Traffic

\[P(+r,-t) = P(+r) \times P(-t \mid +r) \]
\[= \left(\frac{1}{4} \right) \times \left(\frac{1}{4} \right) = \frac{1}{16} \]
Example: Alarm Network

<table>
<thead>
<tr>
<th>B</th>
<th>P(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+b</td>
<td>0.001</td>
</tr>
<tr>
<td>-b</td>
<td>0.999</td>
</tr>
</tbody>
</table>

| A | J | P(J|A) |
|----|----|------|
| +a | +j | 0.9 |
| +a | -j | 0.1 |
| -a | +j | 0.05 |
| -a | -j | 0.95 |

| A | M | P(M|A) |
|----|----|------|
| +a | +m | 0.7 |
| +a | -m | 0.3 |
| -a | +m | 0.01 |
| -a | -m | 0.99 |

<table>
<thead>
<tr>
<th>E</th>
<th>P(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+e</td>
<td>0.002</td>
</tr>
<tr>
<td>-e</td>
<td>0.998</td>
</tr>
</tbody>
</table>

| B | E | A | P(A|B,E) |
|----|----|----|---------|
| +b | +e | +a | 0.95 |
| +b | +e | -a | 0.05 |
| +b | -e | +a | 0.94 |
| +b | -e | -a | 0.06 |
| -b | +e | +a | 0.29 |
| -b | +e | -a | 0.71 |
| -b | -e | +a | 0.001 |
| -b | -e | -a | 0.999 |
Example: Traffic

Causal direction

\begin{align*}
R & \rightarrow T \\
\begin{array}{c|c}
R & T \\
+& 1/4 \\
- & 3/4 \\
\end{array}
\end{align*}

\begin{align*}
P(T|R) & \\
\begin{array}{c|cc}
+ & t & 3/4 \\
+ & t & 1/4 \\
- & t & 1/2 \\
- & t & 1/2 \\
\end{array}
\end{align*}

\begin{align*}
P(R,T) & \\
\begin{array}{c|ccc}
+ & t & 3/16 \\
+ & t & 1/16 \\
+ & t & 6/16 \\
+ & t & 6/16 \\
\end{array}
\end{align*}
Example: Reverse Traffic

Reverse causality?

\[P(T) \]
<table>
<thead>
<tr>
<th>(+t)</th>
<th>(-t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(9/16)</td>
<td>(7/16)</td>
</tr>
</tbody>
</table>

\[P(R|T) \]
\(+t \)	\(+r \)	\(1/3 \)
\(+t \)	\(-r \)	\(2/3 \)
\(-t \)	\(+r \)	\(1/7 \)
\(-t \)	\(-r \)	\(6/7 \)

\[P(R,T) \]
\(+r \)	\(+t \)	\(3/16 \)
\(+r \)	\(-t \)	\(1/16 \)
\(-r \)	\(+t \)	\(6/16 \)
\(-r \)	\(-t \)	\(6/16 \)
Causality?

When Bayes’ nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation

\[P(x_i|x_1, \ldots, x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence
Bayes’ Nets

So far: how a Bayes’ net encodes a joint distribution

Next: how to answer queries about that distribution

- So far:
 - First assembled BNs using an intuitive notion of conditional independence as causality.
 - Then saw that key property is conditional independence

- Main goal: answer queries about conditional independence and influence

After that: how to answer numerical queries (inference)
Bayes’ Nets

A Bayes’ net is an efficient encoding of a probabilistic model of a domain

Questions we can ask:
- Inference: given a fixed BN, what is P(X | e)?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?
Bayes’ Net Semantics

A directed, acyclic graph, one node per random variable

A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents’ values

$$P(x_1, \ldots, x_n) = \prod_i P(x_i | \text{parents}(X_i)),$$

Bayes’ nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
Example: Alarm Network

\[
P(+b, -e, +a, -j, +m) = P(+b) \cdot P(-e) \cdot P(+a \mid +b, -e) \cdot P(-j \mid +a) \cdot P(+m \mid +a)
\]
\[
= -0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7
\]
Size of a Bayes’ Net

How big is a joint distribution over N Boolean variables?
- \(2^N\)

How big is an N-node net if nodes have up to k parents?
- \(O(N \times 2^{k+1})\)

Both give you the power to calculate

\[P(X_1, X_2, \cdots, X_N)\]

BNs: Huge space savings!
Also easier to elicit local CPTs
Also faster to answer queries (coming)
Bayes’ Nets

Representation. ✔
Conditional Independences (Next.)
Probabilistic Inference
Learning Bayes’ Nets from Data