Lecture Attendance Policy is suspended.
 Working out full ramifications.

Written Homework 2 is out.
 Get started!
Artificial Intelligence: Bayes’ Nets

Representation.
Conditional Independences (Next.)
Probabilistic Inference
Learning Bayes’ Nets from Data
Conditional Independence

X and Y are independent if

\[\forall x, y : P(x, y) = P(x)P(y) \rightarrow X \perp \perp Y \]

X and Y are conditionally independent given Z

\[\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \rightarrow X \perp \perp Y|Z \]

(Conditional) independence is a property of a distribution

Example: Alarm \perp \perp Fire | Smoke
Assumptions we are required to make to define the Bayes net when given the graph:

\[P(x_i|x_1, x_2, \ldots, x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

Beyond above “chain rule for Bayes net” conditional independence assumptions

- Often additional conditional independences
- They can be read off the graph

Important for modeling: understand assumptions made when choosing a Bayes net graph
Conditional independence assumptions directly from simplifications in chain rule:
Additional implied conditional independence assumptions?
Independence in a BN

Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

 ![Diagram of nodes X, Y, Z with arrows]

 - Question: are X and Z necessarily independent?
 - Answer: no.
 - Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Same as Markov chain.
D-separation: Outline
D-separation: Outline

Study independence properties for triples
Analyze complex cases in terms of member triples
D-separation: a condition / algorithm for answering such queries
Causal Chains

This configuration is a “causal chain”

\[
P(x, y, z) = P(x)P(y|x)P(z|y)
\]

Guaranteed X independent of Z? No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:

 Low pressure → rain → traffic,
 High pressure → no rain → no traffic

- In numbers:
 - \(P(+y | +x) = 1, P(-y | -x) = 1\),
 - \(P(+z | +y) = 1, P(-z | -y) = 1\)
Casual Chain

This configuration is a “causal chain”

\[P(x, y, z) = P(x)P(y|x)P(z|y) \]

Guaranteed X independent of Z given Y?

\[
P(z|y, x) = \frac{P(x, y, z)}{P(x, y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)} = P(z|y)
\]

Yes!!!!!

- Evidence along the chain “blocks” the influence
This configuration is a “common cause”

Y: Project due

Guaranteed X independent of Z? No!

- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.

Example:

- Project due \iff both forums busy and lab full

In numbers:

- $P(+x \mid +y) = 1$, $P(-x \mid -y) = 1$,
- $P(+z \mid +y) = 1$, $P(-z \mid -y) = 1$
This configuration is a “common cause”

Y: Project due

Guaranteed X and Z independent given Y?

\[
P(z|x, y) = \frac{P(x,y,z)}{P(x,y)}
= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}
= P(z|y)
\]

Yes!

Observing the cause blocks influence between effects.

X: Forums busy Z: Lab full
Common Effect

One last configuration: two causes of one effect (v-structures)

X: Raining Y: Ballgame

Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

Are X and Y independent given Z?
- No: seeing traffic puts the rain and the ballgame in competition as explanation.

This is backwards from the other cases

- Observing an effect activates influence between possible causes.
The General Case

CONDITIONAL INDEPENDENCE

IN 3 EASY STEPS!
The General Case

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Any complex example can be broken into repetitions of the three canonical cases
Recipe: shade evidence nodes, look for paths in the resulting graph

Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent

Almost works, but not quite

- Where does it break?
- Answer: the v-structure at T doesn’t count as a link in a path unless “active”
Active / Inactive Paths

Question: Are X and Y conditionally independent given evidence variables Z?

- Yes, if X and Y “d-separated” by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

A path is active if each triple is active:

- Causal chain:
 \[A \rightarrow B \rightarrow C \]
 where B is unobserved (either direction)

- Common cause:
 \[A \leftarrow B \rightarrow C \]
 where B is unobserved

- Common effect (aka v-structure)
 \[A \rightarrow B \leftarrow C \]
 where B or one of its descendents is observed

All it takes to block a path is a single inactive segment
Query: $X_i \perp \perp X_j | \{X_{k_1}, \ldots, X_{k_n}\}$?

Check all (undirected!) paths between X_i and X_j.

- If one or more active, then independence not guaranteed

$$X_i \not\perp \perp X_j | \{X_{k_1}, \ldots, X_{k_n}\}$$

- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{X_{k_1}, \ldots, X_{k_n}\}$$
Example

$R \perp B$? Yes.

$R \perp B | T$? No.

$R \perp B | T'$? No
Example

$L \perp T' | T$? Yes
$L \perp B$? Yes
$L \perp B | T$? No
$L \perp B | T'$? No
$L \perp B | T, R$? Yes
Example

Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I’m sad

Questions:
- \(T \perp D \) ? No..
- \(T \perp D \mid R \) ? Yes.
- \(T \perp D \mid R, S \) ? No.
Structure Implications

Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

\[X_i \perp \!
\!
\perp X_j \mid \{X_{k_1}, \ldots, X_{k_n}\} \]

This list determines the set of probability distributions that can be represented.
Computing All Independences
Given some graph topology G, only certain joint distributions can be encoded.

The graph structure guarantees certain (conditional) independences.

(There might be more independence)

Adding arcs increases the set of distributions, but has several costs.

Full conditioning can encode any distribution.
Bayes nets compactly encode joint distributions.

Guaranteed independencies of distributions can be deduced from BN graph structure.

D-separation gives precise conditional independence guarantees from graph alone.

A Bayes’ net’s joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution.
Bayes’ Nets

Representation ✓

Conditional Independences ✓

Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)

Learning Bayes’ Nets from Data
Bayes’ Nets

Representation ✓

Conditional Independences ✓

Probabilistic Inference (Next).
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)

Learning Bayes’ Nets from Data
Examples:

- Posterior probability
- Most likely explanation:

 Inference

 Inference: calculating some useful quantity from a joint probability distribution
Inference by Enumeration

General case:
- Evidence variables: $E_1, \ldots, E_k = e_1, \ldots, e_k$
- Query* variable: Q
- Hidden variables: H_1, \ldots, H_r

All Variables: Evidence $\cup \{Q\} \cup$ Hidden.

We want: $Pr(Q|e_1, \ldots, e_k)$
* Works fine with multiple query variables, too

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

Step 3: Normalize.

$$Z = \sum_q P(Q = q, e_1, \ldots, e_k)$$

$$P(Q|e_1, \ldots, e_k) = \frac{1}{Z} P(Q, e_1, \ldots, e_k)$$

$$P(Q, e_1, \ldots, e_k) = \sum_{h_1, \ldots, h_r} P(Q, h_1, \ldots, h_r, e_1, \ldots, e_k)$$
Inference by Enumeration in Bayes’ Net

Given unlimited time, inference in BNs is easy.

\[P(B|+j,+m) \propto P(B,+j,+m) \]
\[= \sum_{e,a} P(B,e,a,+j,+m) \]
\[= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a) \]

\[= P(B)P(+e)P(+a|B,+e)P(+j+a)P(+m+a) \]
\[+ P(B)P(+e)P(-a|B,+e)P(+j-a)P(+m-a) \]
\[+ P(B)P(-e)P(+a|B,-e)P(+j+a)P(+m+a) \]
\[+ P(B)P(-e)P(-a|B,-e)P(+j-a) \]
Inference by Enumeration?

\[P(\text{antilock} | \text{observed variables}) = ? \]
Factor Zoo
Joint distribution: $P(X,Y)$
- Entries $P(x,y)$ for all x, y
- Sums to? 1

Selected joint: $P(x,Y)$
- Slice of joint distribution
- Entries $P(x,y)$:
 - fixed x, all y
- Table $P(cold, W)$?
- Sums to? $P(x)$.

Number of capital letters (variables) = dimensionality of the table
Factor Zoo II

Single conditional: $P(Y|x)$
- Entries $P(y|x)$ for fixed x, all y
- Sum of entries? 1

Family of conditionals:

$P(X|Y)$
- Multiple conditionals
- Entries $P(x|y)$ for all x, y
- Sum? $|Y|$
Specified family: \(P(y|X) \)
- Entries \(P(y|x) \) for fixed \(y \), but for all \(x \)
- Sums to? who knows!

\[
P(rain|T)
\begin{array}{ccc}
\text{T} & \text{W} & \text{P} \\
\text{hot} & \text{rain} & 0.2 \\
\text{cold} & \text{rain} & 0.6 \\
\end{array}
\]
In general, when we write $P(Y_1, \ldots, Y_N|X_1, \ldots, X_M)$

- It is a “factor,” a multi-dimensional array
- Its values are $P(y_1, \ldots, y_N|x_1, \ldots, x_M)$
- Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array
Example: Traffic Domain

Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

\[
P(R)\
\begin{array}{|c|c|}
\hline
T & L \\
- & 0.1 \\
- & 0.9 \\
\hline
\end{array}
\]

\[
P(T|R)\
\begin{array}{|c|c|c|}
\hline
+r & +t & 0.8 \\
+r & -t & 0.2 \\
- & +t & 0.1 \\
- & -t & 0.9 \\
\hline
\end{array}
\]

\[
P(L|T)\
\begin{array}{|c|c|c|}
\hline
+t & +l & 0.3 \\
+t & -l & 0.7 \\
- & +l & 0.1 \\
- & -l & 0.9 \\
\hline
\end{array}
\]
Inference by Enumeration: Procedural Outline

Track objects called factors.

Initial factors are local CPTs (one per node)

\[
P(R) \quad P(T|R) \quad P(L|T)
\]

<table>
<thead>
<tr>
<th>(T)</th>
<th>(L)</th>
<th>(+r)</th>
<th>(+t)</th>
<th>(0.8)</th>
<th>(+t)</th>
<th>(+l)</th>
<th>(0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+r)</td>
<td>(0.1)</td>
<td>(+r)</td>
<td>(-t)</td>
<td>(0.2)</td>
<td>(+t)</td>
<td>(-l)</td>
<td>(0.7)</td>
</tr>
<tr>
<td>(-r)</td>
<td>(0.9)</td>
<td>(-r)</td>
<td>(+t)</td>
<td>(0.1)</td>
<td>(-t)</td>
<td>(+l)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>(-r)</td>
<td>(0.9)</td>
<td>(-r)</td>
<td>(-t)</td>
<td>(0.9)</td>
<td>(-t)</td>
<td>(-l)</td>
<td>(0.9)</td>
</tr>
</tbody>
</table>

Any known values are selected.
E.g. if we know \(L = +l\), the initial factors are

\[
P(R) \quad P(T|R) \quad P(L|T)
\]

<table>
<thead>
<tr>
<th>(T)</th>
<th>(L)</th>
<th>(+r)</th>
<th>(+t)</th>
<th>(0.8)</th>
<th>(+t)</th>
<th>(+l)</th>
<th>(0.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+r)</td>
<td>(0.1)</td>
<td>(+r)</td>
<td>(-t)</td>
<td>(0.2)</td>
<td>(+t)</td>
<td>(-l)</td>
<td>(0.7)</td>
</tr>
<tr>
<td>(-r)</td>
<td>(0.9)</td>
<td>(-r)</td>
<td>(+t)</td>
<td>(0.1)</td>
<td>(-t)</td>
<td>(+l)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>(-r)</td>
<td>(0.9)</td>
<td>(-r)</td>
<td>(-t)</td>
<td>(0.9)</td>
<td>(-t)</td>
<td>(-l)</td>
<td>(0.9)</td>
</tr>
</tbody>
</table>

Procedure: Join all factors, then eliminate all hidden variables.
Operation 1: Join Factors

First basic operation: joining factors

Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved

Example: Join on R

| $P(R)$ | $P(T|R)$ | $P(R, T)$ |
|--------|----------|-----------|
| T | $+r$ | $+t$ | 0.08 |
| T | $+r$ | $-t$ | 0.02 |
| T | $-r$ | $+t$ | 0.09 |
| T | $-r$ | $-t$ | 0.81 |

Computation for each entry: pointwise products
Example: Multiple Joins
Example: Multiple Joins

\[\begin{array}{c c c}
R & \rightarrow & T \\
T & \rightarrow & L
\end{array} \]

\[P(R) \]

<table>
<thead>
<tr>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>0.1</td>
</tr>
<tr>
<td>-r</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\[P(T|R) \]

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

\[P(L|T) \]

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

Join R

\[\begin{array}{c c c c c}
R, T & \rightarrow & L & \text{Join R} & \rightarrow
\end{array} \]

\[P(R,T) \]

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

\[P(R,T,L) \]

+r	+t	+l	0.024
+r	+t	-l	0.056
+r	-t	+l	0.002
+r	-t	-l	0.018
-r	+t	+l	0.027
-r	-t	+l	0.063
-r	+t	-l	0.081
-r	-t	-l	0.729
Operation 2: Eliminate

Second basic operation: marginalization

Take a factor and sum out a variable

- Shrinks a factor to a smaller one
- A projection operation

Example:

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>-t</td>
<td>0.02</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>0.09</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Sum R

\[
\begin{array}{c|c}
 & +t \\
\hline
+t & 0.17 \\
-t & 0.83 \\
\end{array}
\]

\[
\rightarrow
\]

\[
+\]
Multiple Elimination

$P(R, T, L)$

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+r</td>
<td>+t</td>
<td>+l</td>
<td>0.024</td>
</tr>
<tr>
<td>+r</td>
<td>+t</td>
<td>-l</td>
<td>0.056</td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>+l</td>
<td>0.002</td>
</tr>
<tr>
<td>+r</td>
<td>-t</td>
<td>-l</td>
<td>0.018</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>+l</td>
<td>0.027</td>
</tr>
<tr>
<td>-r</td>
<td>+t</td>
<td>-l</td>
<td>0.063</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>+l</td>
<td>0.081</td>
</tr>
<tr>
<td>-r</td>
<td>-t</td>
<td>-l</td>
<td>0.729</td>
</tr>
</tbody>
</table>

Sum out R → T, L

<table>
<thead>
<tr>
<th></th>
<th>+t</th>
<th>+l</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+t</td>
<td>+l</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>+t</td>
<td>-l</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>+l</td>
<td>0.083</td>
<td></td>
</tr>
<tr>
<td>-t</td>
<td>-l</td>
<td>0.747</td>
<td></td>
</tr>
</tbody>
</table>

Sum out T → L

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+l</td>
<td>0.134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-l</td>
<td>0.866</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thus Far: Multiple Join, Multiple Eliminate

Inference by Enumeration!
Example: Traffic Domain (revisited)

Random Variables

- **R**: Raining
- **T**: Traffic
- **L**: Late for class!

\[
P(L) = \sum_{r,t} P(r,t,L) = \sum_{r,t} P(r)P(t|r)P(L|t).
\]

or \[
P(L) = \sum_t P(t)P(L|t) \quad \text{and} \quad P(T) = \sum_r P(r)P(T|R).\]
Inference by Enumeration vs. Variable Elimination

Why is inference by enumeration so slow?
- Join whole joint distribution before sum out the hidden variables

Idea: interleave joining and marginalizing!
- Called “Variable Elimination”
- Still NP-hard, but usually much faster than inference by enumeration