http://bit.ly/3GEMokW
Graph Search.
 Consistent Heuristic.

Constraint Satisfaction Problems.
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

Idea: never expand a state twice

How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
 - Before expanding a node,
 - check if state was never been expanded before
 - If yes skip it, else add to closed set and expand.

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?

How about optimality?
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.

A and B in fringe!

Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.

C in fringe with key, $3 + h(C) = 4$.

G in fringe with key, 5.

Could have been there in 4.
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal} \).

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost

Consistent \(\implies \) admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
\begin{align*}
 f(C) &= h(C) + 1 = 3. \\
 f(A) &= h(A) = 4. \\
\end{align*}
\]
Consistent: \(f(A) = 2 < 3 = f(C) \).

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x) \).

Proof:
\[
\begin{align*}
 f(y) &= g(x) + \text{cost}(x, y) + h(y) \\
 &\geq g(x) + h(x) - h(y) + h(y) = g(x) + h(x) = f(x)
\end{align*}
\]

\(\square \)

The “estimate” of plan cost keeps rising as you progress.
Optimality of A* Graph Search
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state s, the optimal path is discovered.

Result: A* graph search is optimal

Fact 1 Proof. Previous slide.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.

- s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.
- v in fringe with key $f(v) = g(v) + h(v)$.

$h(v) - h(s) \leq \text{pathCost}(v, s)$ by induction.

$g(v) + \text{pathCost}(v, s) < g(x) + \text{cost}(x, s)$

$\implies f(v) < f(s)$.

But then v would have been expanded before s!
Optimality

Tree search:
A* is optimal if heuristic is admissible.
UCS is a special case (h = 0)

Graph search:
A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
Next:

Constraint Satisfaction Problems.
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: *path* to the goal.

Paths have various costs, depths.

Heuristics give problem-specific guidance

Identification: assignments to variables

The goal itself is important, not *path*.

All paths at same depth (for some formulations)

CSPs are specialized identification problems
Constraint Satisfaction Problems

Standard search problems:
+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):
+ A special subset of search problems.
+ State: variables X_i with values from domain D (possibly D_i)
+ Goal test: constraints on legal combinations of values for subsets of variables

Simple example of a formal representation language.

Allows useful still general-purpose algorithms with more power than standard search algorithms
CSP Examples

Western Australia

Northern Territory

Queensland

South Australia

New South Wales

Victoria

Tasmania
Example: Map Coloring

Variables: \textbf{WA, NA, Q, NSW, V, SA, T}

Domains: D=red,green,blue

Constraints: adjacent regions must have different colors.

\textbf{Implicit: WA \neq NT.}

\textbf{Explicit: (WA,NT) \in \{(red,green),(red,blue),...,\}.}

Goal Test: do assignments satisfy all constraints?

\{ \textbf{WA = red, NT= green, Q = red, NSW=green, V=red, SA=blue, T=green } \}
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: \{0, 1\}

Constraints:
$\forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
$\forall i,j,k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
$\forall i,j,k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
$\forall i,j,k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

\[\sum_{ij} X_{ij} = N \]
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: $\{1, 2, 3, \ldots, N\}$
Constraints:
- Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)
- Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$
Constraint Graphs
Constraint Graphs

Binary CSP: each constraint relates (at most) two variables

Binary constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search.

E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) – n-queens]
5-Queens
Example: Cryptarithmetic

Variables:
\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Constraints:
- \[O + O = R + 10 \cdot X_1 \]
- \[W + W + X_1 = U + 10 \cdot X_2 \]
- \[\ldots \]
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1, 2, \ldots, 9\}

Constraints:
9-way alldiff for each row
9-way alldiff for each column
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
- Each intersection is a variable.
- Adjacent intersections impose constraints on each other.
- Solutions are physically realizable 3D interpretations.
Varieties of CSPs and Constraints
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable
 Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)
Varieties of Constraints

Varieties of Constraints.

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq \text{green}.$$

Binary constraints involve pairs of variables, e.g.:

$$SA \neq WA$$

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):
E.g., red is better than green
Often represented as cost for assignment
Gives constrained optimization problems
(We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Circuit layout
Fault diagnosis
....lots more!

Many real-world problems involve real-valued variables...
Solving CSPs
Standard Search Formulation

Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment,
 Successor function: assign a value to an unassigned variable

Goal test: the current assignment is complete and satisfies all constraints.

We’ll start with the straightforward, naive approach, then improve it
Search Methods

What would BFS do?
What would DFS do?
What problems does naive search have?
Video of Demo Coloring – DFS
Backtracking Search
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step

Idea 2: Check constraints as you go.
I.e. consider values which do not conflict with previous assignments
Might have to do some computation to check the constraints
“Incremental goal test”

Depth-first search with these two improvements is called **backtracking search** (not the best name)
Can solve n-queens for $n \approx 25$
Backtracking Example
Backtracking Search

```plaintext
function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking({}, csp)

function Recursive-Backtracking(assignment, csp) returns soln/failure

if assignment is complete then return assignment

var ← Select-Unassigned-Variable(VARIABLES[csp], assignment, csp)

for each value in Order-Domain-Values(var, assignment, csp) do

    if value is consistent with assignment given Constraints[csp] then

        add {var = value} to assignment

        result ← Recursive-Backtracking(assignment, csp)

        if result ≠ failure then return result

        remove {var = value} from assignment

    return failure
```

Backtracking = DFS + variable-ordering + fail-on-violation
What are the choice points?
Video of Demo Coloring – Backtracking
CSP-Backtracking Search

CSP-Backtracking = DFS + variable-ordering + fail-on-violation

One optimization possibility: Pick “better” variable orderings and value orderings.
Some issues.

Consider the partially completed CSP assignment.
Decisions made bottom-up, left-to-right. Let X be the decision is obviously doomed in the current assignment.
What is X?
Bonus: How many decisions before CSP-Backtracking search realizes its error?
Improving Backtracking

General-purpose ideas give huge gains in speed.

Ordering:
Which variable should be assigned next?
In what order should its values be tried?

Filtering:
Can we detect inevitable failure early?

Structure:
Can we exploit the problem structure?
Next Time.

Heuristic improvements to CSP search.