http://bit.ly/3GEMokW
Graph Search.
Today.

http://bit.ly/3GEMokW
Graph Search.
Consistent Heuristic.
http://bit.ly/3GEMokW
Graph Search.
 Consistent Heuristic.
Constraint Satisfaction Problems.
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

Idea: never expand a state twice
Graph Search

Idea: never expand a state twice

How to implement:
Graph Search

Idea: never expand a state twice

How to implement:
 Tree search + set of expanded states ("closed set")
Graph Search

Idea: never expand a state twice

How to implement:
Tree search + set of expanded states ("closed set")
Expand the search tree node-by-node, but...
Graph Search

Idea: never expand a state twice

How to implement:
Tree search + set of expanded states ("closed set")
Expand the search tree node-by-node, but...
Before expanding a node,
Graph Search

Idea: never expand a state twice

How to implement:

Tree search + set of expanded states ("closed set")
Expand the search tree node-by-node, but...
Before expanding a node,
 check if state was never been expanded before
Graph Search

Idea: never expand a state twice

How to implement:
Tree search + set of expanded states (“closed set”)
Expand the search tree node-by-node, but...
Before expanding a node,
 check if state was never been expanded before
 If yes skip it, else add to closed set and expand.
Graph Search

Idea: never expand a state twice

How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node,
 - check if state was never been expanded before
 - If yes skip it, else add to closed set and expand.

Important: store the closed set as a set, not a list
Graph Search

Idea: never expand a state twice

How to implement:
Tree search + set of expanded states ("closed set")
Expand the search tree node-by-node, but...
Before expanding a node,
check if state was never been expanded before
If yes skip it, else add to closed set and expand.

Important: store the closed set as a set, not a list

Can graph search wreck completeness?
Graph Search

Idea: never expand a state twice

How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
 - Before expanding a node,
 - check if state was never been expanded before
 - If yes skip it, else add to closed set and expand.

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?
Graph Search

Idea: never expand a state twice

How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
 Before expanding a node,
 check if state was never been expanded before
 If yes skip it, else add to closed set and expand.

Important: store the closed set as a set, not a list

Can graph search wreck completeness? Why/why not?
How about optimality?
Is $h(\cdot)$ admissible? Yes.
Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S. A and B in fringe!
Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.
C in fringe with key, 3 + $h(C) = 4$.
G in fringe with key, 5.
Could have been there in 4.
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible?

State space graph

Search tree

Is $h(\cdot)$ admissible?
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.

A and B in fringe!
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.
 A and B in fringe!
 Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.

C in fringe with key, 3 + $h(C) = 4$.
G in fringe with key, 5.
Could have been there in 4.
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.
- A and B in fringe!
- Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.
- C in fringe with key, $3 + h(C) = 4$.

![State space graph and search tree with numbers and arrows connecting states and nodes with keys and distances.](image-url)
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.
- A and B in fringe!
- Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.
- C in fringe with key, $3 + h(C) = 4$.
- G in fringe with key, 5.
A* Graph Search Gone Wrong?

Is $h(\cdot)$ admissible? Yes.

Will exploring w.r.t $h(B) + g(n)$ be optimal?

Expand S.

- A and B in fringe!
 - Expands B, since $h(B) + g(B) = 2 < 5 = h(A) + g(A)$.
 - C in fringe with key, $3 + h(C) = 4$.
 - G in fringe with key, 5.

Could have been there in 4.
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

\[h(A) = 4 \]
\[h(B) = 2 \]
\[h(C) = 1 \]

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x) \).

Proof:
\[
f(y) = g(x) + \text{cost}(x, y) + h(y) \\
= g(x) + h(x) - h(y) + h(y) \\
= g(x) + h(x) = f(x)
\]
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq \text{cost to goal}$.
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq \text{cost to goal.}$

Consistency: $h(x) - h(y) \leq \text{cost}(x, y).$
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal} \).

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal.} \)

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y). \)

heuristic “arc” cost ≤ actual arc cost
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.

heuristic “arc” cost \leq actual arc cost

Consistent \implies admissible?

A $\xrightarrow{1}$ C $\xrightarrow{3}$ G

$h = 1$

$h = 4$

$h = 2$
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq cost(x, y)$.

heuristic “arc” cost \leq actual arc cost

Consistent \implies admissible? Yes?
Consistency of Heuristics

Main idea: est. heuristic costs \(\leq \) actual costs

Admissibility: \(h(x) \leq \) cost to goal.

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost \(\leq \) actual arc cost

Consistent \(\implies \) admissible? Yes? No?

- Admissibility
- Consistency
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.

heuristic “arc” cost ≤ actual arc cost

Consistent \implies admissible? Yes? No?

Consistent:
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \) cost to goal.

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost

Consistent \(\iff \) admissible? Yes? No?

Consistent: f value along a path never decreases
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal} \).

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost

Consistent \(\iff\) admissible? Yes? No?

Consistent: f value along a path never decreases
Admissible:
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.

heuristic “arc” cost \leq actual arc cost

Consistent \implies admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[f(C) = h(C) + 1 = 3. \]
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal} \).

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost

Consistent \(\implies \) admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
\begin{align*}
 f(C) &= h(C) + 1 = 3. \\
 f(A) &= h(A) = 4.
\end{align*}
\]
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq cost(x, y)$.

heuristic “arc” cost ≤ actual arc cost

Consistent \iff admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:

$f(C) = h(C) + 1 = 3.$
$f(A) = h(A) = 4.$

Consistent:
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq \text{cost}(x,y)$.

heuristic “arc” cost \leq actual arc cost

Consistent \implies admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
f(C) = h(C) + 1 = 3.
\]
\[
f(A) = h(A) = 4.
\]
Consistent: $f(A) = 2$
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq cost(x, y)$.

The “estimate” of plan cost keeps rising as you progress.

Consistent \implies admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:

- $f(C) = h(C) + 1 = 3$.
- $f(A) = h(A) = 4$.

Consistent: $f(A) = 2 < 3 = f(C)$.
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq \text{cost to goal}$.

Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.

- heuristic “arc” cost ≤ actual arc cost
- Consistent \implies admissible? Yes? No?
- Consistent: f value along a path never decreases

Admissible:
- $f(C) = h(C) + 1 = 3$.
- $f(A) = h(A) = 4$.

Consistent: $f(A) = 2 < 3 = f(C)$.

Claim: If y is expanded due to x, $f(y) \geq f(x)$.
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: $h(x) \leq \text{cost to goal}$.
Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.

heuristic “arc” cost ≤ actual arc cost

Consistent \implies admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:

$f(C) = h(C) + 1 = 3$.
$f(A) = h(A) = 4$.
Consistent: $f(A) = 2 < 3 = f(C)$.

Claim: If y is expanded due to x, $f(y) \geq f(x)$.

Proof:

$f(y) = g(x) + \text{cost}(x, y) + h(y)$
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal}. \)

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y). \)

heuristic “arc” cost ≤ actual arc cost

Consistent \(\implies \) admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
\begin{align*}
 f(C) &= h(C) + 1 = 3. \\
 f(A) &= h(A) = 4. \\
 \text{Consistent: } f(A) &= 2 < 3 = f(C).
\end{align*}
\]

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x) \).

Proof:
\[
\begin{align*}
 f(y) &= g(x) + \text{cost}(x, y) + h(y) \\
 &\geq g(x) + h(x) - h(y) + h(y)
\end{align*}
\]
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal} \).

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y) \).

heuristic “arc” cost ≤ actual arc cost

Consistent \(\iff \) admissible? Yes? No?

Consistent: \(f \) value along a path never decreases

Admissible:
\[
\begin{align*}
 f(C) &= h(C) + 1 = 3. \\
 f(A) &= h(A) = 4.
\end{align*}
\]

Consistent: \(f(A) = 2 < 3 = f(C) \).

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x) \).

Proof:
\[
\begin{align*}
 f(y) &= g(x) + \text{cost}(x, y) + h(y) \\
 &\geq g(x) + h(x) - h(y) + h(y) = g(x) + h(x)
\end{align*}
\]
Consistency of Heuristics

Main idea: est. heuristic costs \leq actual costs

Admissibility: $h(x) \leq$ cost to goal.

Consistency: $h(x) - h(y) \leq \text{cost}(x, y)$.
heuristic “arc” cost \leq actual arc cost

Consistent \implies admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:

- $f(C) = h(C) + 1 = 3.$
- $f(A) = h(A) = 4.$

Consistent: $f(A) = 2 < 3 = f(C).$

Claim: If y is expanded due to x, $f(y) \geq f(x)$.

Proof:

\[f(y) = g(x) + \text{cost}(x, y) + h(y) \geq g(x) + h(x) - h(y) + h(y) = g(x) + h(x) = f(x) \]
Consistency of Heuristics

Main idea: est. heuristic costs \(\leq \) actual costs

Admissibility: \(h(x) \leq \) cost to goal.

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y). \)

heuristic “arc” cost \(\leq \) actual arc cost

Consistent \iff admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
\begin{align*}
f(C) &= h(C) + 1 = 3. \\
f(A) &= h(A) = 4.
\end{align*}
\]

Consistent: \(f(A) = 2 < 3 = f(C). \)

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x). \)

Proof:
\[
\begin{align*}
f(y) &= g(x) + \text{cost}(x, y) + h(y) \\
&\geq g(x) + h(x) - h(y) + h(y) = g(x) + h(x) = f(x)
\end{align*}
\]
Consistency of Heuristics

Main idea: est. heuristic costs ≤ actual costs

Admissibility: \(h(x) \leq \text{cost to goal}. \)

Consistency: \(h(x) - h(y) \leq \text{cost}(x, y). \)

heuristic “arc” cost ≤ actual arc cost

Consistent \(\implies \) admissible? Yes? No?

Consistent: f value along a path never decreases

Admissible:
\[
\begin{align*}
 f(C) &= h(C) + 1 = 3. \\
 f(A) &= h(A) = 4.
\end{align*}
\]

Consistent: \(f(A) = 2 < 3 = f(C). \)

Claim: If \(y \) is expanded due to \(x \), \(f(y) \geq f(x) \).

Proof:
\[
\begin{align*}
 f(y) &= g(x) + \text{cost}(x, y) + h(y) \\
 &\geq g(x) + h(x) - h(y) + h(y) = g(x) + h(x) = f(x) \\
&\quad \blacksquare
\end{align*}
\]

The “estimate” of plan cost keeps rising as you progress.
Optimality of A* Graph Search
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state \(s \), the optimal path is discovered.

Result: A* graph search is optimal

Fact 1 Proof. Previous slide.
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state s, the optimal path is discovered.
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state s, the optimal path is discovered.

Result: A* graph search is optimal
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state s, the optimal path is discovered.

Result: A* graph search is optimal

Fact 1 Proof. Previous slide.
Optimality of A* Graph Search

Sketch: consider what A* does with a consistent heuristic:

Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)

Fact 2: For every state s, the optimal path is discovered.

Result: A* graph search is optimal

Fact 1 Proof. Previous slide.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.
Fact 2: The optimal path is discovered to every state \(s \).
Proof: Consider first error.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.
Proof: Consider first error.
State s discovered from x.

Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from $y \neq x$.
Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from $y \neq x$.
There is a vertex v in the optimal path to y in fringe.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state \(s \).

Proof: Consider first error.
State \(s \) discovered from \(x \).
Optimal path is from \(y \neq x \).
There is a vertex \(v \) in the optimal path to \(y \) in fringe.
\(s \) in fringe with key \(f(s) = g(x) + \text{cost}(x, s) + h(s) \).
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.
s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.
v in fringe with key $f(v) = g(v) + h(v)$.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from \(y \neq x \).

There is a vertex \(v \) in the optimal path to \(y \) in fringe.
\(s \) in fringe with key \(f(s) = g(x) + \text{cost}(x, s) + h(s) \).
\(v \) in fringe with key \(f(v) = g(v) + h(v) \).
\(h(v) - h(s) \leq \text{pathCost}(v, s) \) by induction.
Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.

State s discovered from x.
Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.

s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.

v in fringe with key $f(v) = g(v) + h(v)$.

$h(v) - h(s) \leq \text{pathCost}(v, s)$ by induction.

$g(v) + \text{pathCost}(v, s) < g(x) + \text{cost}(x, s)$
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error. State s discovered from x. Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.

s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.
v in fringe with key $f(v) = g(v) + h(v)$.

$h(v) - h(s) \leq \text{pathCost}(v, s)$ by induction.
$g(v) + \text{pathCost}(v, s) < g(x) + \text{cost}(x, s)$

$\implies f(v) < f(s)$.
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error.
State s discovered from x.
Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.

- s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.
- v in fringe with key $f(v) = g(v) + h(v)$.
- $h(v) - h(s) \leq \text{pathCost}(v, s)$ by induction.
- $g(v) + \text{pathCost}(v, s) < g(x) + \text{cost}(x, s)$

$\implies f(v) < f(s)$.
But then v would have been expanded before s!
Proof of A* optimality.

Fact 2: The optimal path is discovered to every state s.

Proof: Consider first error. State s discovered from x. Optimal path is from $y \neq x$.

There is a vertex v in the optimal path to y in fringe.

- s in fringe with key $f(s) = g(x) + \text{cost}(x, s) + h(s)$.
- v in fringe with key $f(v) = g(v) + h(v)$.

$h(v) - h(s) \leq \text{pathCost}(v, s)$ by induction.

$g(v) + \text{pathCost}(v, s) < g(x) + \text{cost}(x, s)$

$\implies f(v) < f(s)$.

But then v would have been expanded before s!
Optimality

Tree search:
A* is optimal if heuristic is admissible.
Optimality

Tree search:
- A* is optimal if heuristic is admissible.
- UCS is a special case ($h = 0$)
Optimality

Tree search:
- A* is optimal if heuristic is admissible.
- UCS is a special case (h = 0)

Graph search:
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
Optimality

Tree search:
A* is optimal if heuristic is admissible.
UCS is a special case (h = 0)

Graph search:
A* optimal if heuristic is consistent
Optimality

Tree search:
A* is optimal if heuristic is admissible.
UCS is a special case (h = 0)

Graph search:
A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)
Optimality

Tree search:
A* is optimal if heuristic is admissible.
UCS is a special case (h = 0)

Graph search:
A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)

Consistency implies admissibility
Optimality

Tree search:
A* is optimal if heuristic is admissible.
UCS is a special case (h = 0)

Graph search:
A* optimal if heuristic is consistent
UCS optimal (h = 0 is consistent)

Consistency implies admissibility
In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
Next:
Next:

Constraint Satisfaction Problems.
What is Search For?

Assumptions about the world:

- a single agent,
- deterministic actions,
- fully observed state,
- discrete state space.

Planning: sequences of actions

Want:

- path to the goal.

Paths have various costs, depths.

Heuristics give problem-specific guidance

Identification: assignments to variables

The goal itself is important, not path.

All paths at same depth (for some formulations)

CSPs are specialized identification problems.
What is Search For?

Assumptions about the world:
a single agent,
What is Search For?

Assumptions about the world: a single agent, deterministic actions,
Assumptions about the world: a single agent, deterministic actions, fully observed state,
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: *path* to the goal.
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: *path* to the goal.

Paths have various costs, depths.
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: *path* to the goal.

Paths have various costs, depths.

Heuristics give problem-specific guidance
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: path to the goal.

Paths have various costs, depths.

Heuristics give problem-specific guidance

Identification: assignments to variables
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions
- Want: *path* to the goal.
- Paths have various costs, depths.
- Heuristics give problem-specific guidance

Identification: assignments to variables
- The goal itself is important, not *path*.
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: path to the goal.

 Paths have various costs, depths.

Heuristics give problem-specific guidance

Identification: assignments to variables

The goal itself is important, not path.

All paths at same depth (for some formulations)
What is Search For?

Assumptions about the world: a single agent, deterministic actions, fully observed state, discrete state space.

Planning: sequences of actions

Want: *path* to the goal.

Paths have various costs, depths.

Heuristics give problem-specific guidance

Identification: assignments to variables

The goal itself is important, not *path*.

All paths at same depth (for some formulations)

CSPs are specialized identification problems
Constraint Satisfaction Problems
Constraint Satisfaction Problems

Standard search problems:

- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):
- A special subset of search problems.
- State: variables X_i with values from domain D (possibly D_i)
- Goal test: constraints on legal combinations of values for subsets of variables

Simple example of a formal representation language. Allows useful still general-purpose algorithms with more power than standard search algorithms.
Constraint Satisfaction Problems

Standard search problems:

+ State is a “black box”: arbitrary data structure
Constraint Satisfaction Problems

Standard search problems:

+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
Constraint Satisfaction Problems

Standard search problems:

- State is a “black box”: arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
Constraint Satisfaction Problems

Standard search problems:

+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything
Constraint Satisfaction Problems

Standard search problems:
+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):
Constraint Satisfaction Problems

Standard search problems:
+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):
+ A special subset of search problems.
Constraint Satisfaction Problems

Standard search problems:

+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):

+ A special subset of search problems.
+ State: variables X_i with values
Standard search problems:
+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):
+ A special subset of search problems.
+ State: variables X_i with values from domain D (possibly D_i)
Standard search problems:

- State is a “black box”: arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):

- A special subset of search problems.
- State: variables X_i with values from domain D (possibly D_i)
- Goal test: constraints on legal combinations
Constraint Satisfaction Problems

Standard search problems:
- State is a “black box”: arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):
- A special subset of search problems.
- State: variables X_i with values from domain D (possibly D_i)
- Goal test: constraints on legal combinations of values for subsets of variables
Constraint Satisfaction Problems

Standard search problems:
- State is a “black box”: arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

Constraint satisfaction problems (CSPs):
- A special subset of search problems.
- State: variables X_i with values from domain D (possibly D_i)
- Goal test: constraints on legal combinations of values for subsets of variables
Constraint Satisfaction Problems

Standard search problems:
+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):
+ A special subset of search problems.
+ State: variables X_i with values from domain D (possibly D_i)
+ Goal test: constraints on legal combinations of values for subsets of variables

Simple example of a formal representation language.
Constraint Satisfaction Problems

Standard search problems:

+ State is a “black box”: arbitrary data structure
+ Goal test can be any function over states
+ Successor function can also be anything

Constraint satisfaction problems (CSPs):

+ A special subset of search problems.
+ State: variables X_i with values from domain D (possibly D_i)
+ Goal test: constraints on legal combinations of values for subsets of variables

Simple example of a formal representation language.

Allows useful still general-purpose algorithms with more power than standard search algorithms
Example: Map Coloring

Variables: WA, NA, Q, NSW, V, SA, T
Example: Map Coloring

Variables: \textbf{WA, NA, Q, NSW, V, SA, T}
Domains: \textbf{D=red,green,blue}
Example: Map Coloring

Variables: \textbf{WA, NA, Q, NSW, V, SA, T}

Domains: D=red,green,blue

Constraints: adjacent regions must have different colors.
Example: Map Coloring

Variables: $\text{WA, NA, Q, NSW, V, SA, T}$

Domains: $D=\text{red, green, blue}$

Constraints: adjacent regions must have different colors.

Implicit: $\text{WA} \neq \text{NT}$.
Example: Map Coloring

Variables: WA, NA, Q, NSW, V, SA, T
Domains: D=red,green,blue
Constraints: adjacent regions must have different colors.
 Implicit: WA ≠ NT.
 Explicit: (WA,NT) ∈ \{(red,green),(red,blue),...,\}.

Goal Test: do assignments satisfy all constraints?

{WA = red, NT= green, Q = red, NSW=green, V=red, SA=blue, T=green}
Example: Map Coloring

Variables: WA, NA, Q, NSW, V, SA, T

Domains: $D=\text{red,green,blue}$

Constraints: adjacent regions must have different colors.

Implicit: $WA \neq NT$.

Explicit: $(WA,NT) \in \{(\text{red,green}), (\text{red,blue}), \ldots, \}$.

Goal Test: do assignments satisfy all constraints?

{ $WA = \text{red}$, $NT= \text{green}$, $Q = \text{red}$,
 $NSW=\text{green}$, $V=\text{red}$, $SA=\text{blue}$, $T=\text{green}$ }
Example: N-Queens

Formulation 1:

Variables: X_{ij}

Domains: $\{0, 1\}$

Constraints:

$\forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i, j, k (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i, j, k (X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i, j, k (X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\sum_{ij} X_{ij} = N$
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$
Example: N-Queens

Formulation 1:
- Variables: X_{ij}
- Domains: $\{0, 1\}$

Constraints:
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$

Constraints:
$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$

Constraints:
$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$

Constraints:
$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$
$\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$
$\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$

Constraints:
\[\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \]
\[\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \]
\[\forall i, j, k \ (X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \]
\[\forall i, j, k \ (X_{ij}, X_{i+k, j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \]
Example: N-Queens

Formulation 1:
Variables: X_{ij}
Domains: $\{0, 1\}$

Constraints:
\[
\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
\]
Example: N-Queens

Formulation 1:

Variables: X_{ij}

Domains: $\{0, 1\}$

Constraints:

$\forall i,j,k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i,j,k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i,j,k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\forall i,j,k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$

$\sum_{ij} X_{ij} = N$
Example: N-Queens

Formulation 2:
Variables: Q_k
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: $\{1, 2, 3, \ldots, N\}$
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: \{1, 2, 3, \ldots, N\}
Constraints:
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: $\{1, 2, 3, \ldots, N\}$
Constraints:
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: $\{1, 2, 3, \ldots, N\}$
Constraints:
Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)
Example: N-Queens

Formulation 2:
Variables: Q_k
Domains: $\{1, 2, 3, \ldots, N\}$
Constraints:
- Implicit: $\forall i, j$ non-threatening (Q_i, Q_j)
- Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
Constraint Graphs
Binary CSP: each constraint relates (at most) two variables

![Constraint Graph](image)

Constraint Graphs
Constraint Graphs

Binary CSP: each constraint relates (at most) two variables

Binary constraint graph: nodes are variables, arcs show constraints
Constraint Graphs

Binary CSP: each constraint relates (at most) two variables

Binary constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search.
Binary CSP: each constraint relates (at most) two variables

Binary constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search.
 E.g., Tasmania is an independent subproblem!
Constraint Graphs

Binary CSP: each constraint relates (at most) two variables

Binary constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search.

E.g., Tasmania is an independent subproblem!

[Demo: CSP applet (made available by aispace.org) – n-queens]
5-Queens
Example: Cryptarithmetic

Variables:

\[
\begin{array}{c}
\text{T W O} \\
+ \text{T W O} \\
\hline
\text{F O U R}
\end{array}
\]

Domains:
\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

Constraints:

\[
\begin{align*}
O + O &= R + 10 \cdot X_1 \\
W + W + X_1 &= U + 10 \cdot X_2 \\
&\vdots
\end{align*}
\]
Example: Cryptarithmetic

Variables: $F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$
Example: Cryptarithmetic

Variables:
\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:
Example: Cryptarithmetic

Variables:

\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:

\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]
Example: Cryptarithmetic

Variables:
$F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$

Domains:
{$0, 1, 2, 3, 4, 5, 6, 7, 8, 9$}

Constraints:
Example: Cryptarithmetic

Variables:
\[\text{F T U W R O } X_1 \ X_2 \ X_3 \]

Domains:
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Constraints:
\[\text{alldiff (F, T, U, W, R, O).} \]

\[\text{O + O = R + 10 \cdot X_1.} \]

\[\text{W + W = U + 10 \cdot X_2.} \]

\[\text{···} \]
Example: Cryptarithmetic

Variables:
\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Constraints:
\[\text{alldiff}(F, T, U, W, R, O). \]
Example: Cryptarithmetic

Variables:
$F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3$

Domains:
$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Constraints:

\[\text{alldiff}(F, T, U, W, R, O). \]

\[O + O = R + 10 \cdot X_1 \]
Example: Cryptarithmetic

Variables:
\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Constraints:
- \[O + O = R + 10 \cdot X_1 \]
- \[W + W + X_1 = U + 10 \cdot X_2 \]
Example: Cryptarithmetic

Variables:
\[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]

Domains:
\[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \]

Constraints:
\[
\]
\[
O + O = R + 10 \cdot X_1
\]
\[
W + W + X_1 = U + 10 \cdot X_2
\]
\[
\ldots
\]
Example: Sudoku

Variables:

\[
\begin{array}{ccc}
8 & 4 & 1 \\
5 & 1 & 2 \\
1 & 3 & 8 \\
6 & 8 & 4 \\
2 & 9 & 5 \\
7 & 2 & 3 \\
7 & 8 & 2 \\
2 & 6 & 3
\end{array}
\]
Example: Sudoku

Variables:
Each (open) square.
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1,2,\ldots,9\}
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1, 2, \ldots, 9\}

Constraints:
9-way alldiff for each row
9-way alldiff for each column
9-way alldiff for each region (or can have a bunch of pairwise inequality constraints)
Example: Sudoku

Variables:
 Each (open) square.

Domains:
 \{1,2,\ldots,9\}

Constraints:
 9-way alldiff for each row
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1, 2, \ldots, 9\}

Constraints:
9-way alldiff for each row
9-way alldiff for each column
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1, 2, \ldots, 9\}

Constraints:
9-way alldiff for each row
9-way alldiff for each column
9-way alldiff for each region
Example: Sudoku

Variables:
Each (open) square.

Domains:
\{1, 2, \ldots, 9\}

Constraints:
9-way alldiff for each row
9-way alldiff for each column
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
- Each intersection is a variable.
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
 Each intersection is a variable
 Adjacent intersections impose constraints on each other.
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
- Each intersection is a variable.
- Adjacent intersections impose constraints on each other.
- Solutions are physically realizable 3D interpretations.
Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects.

An early example of an AI computation posed as a CSP.

Approach:
- Each intersection is a variable.
- Adjacent intersections impose constraints on each other.
- Solutions are physically realizable 3D interpretations.
Varieties of CSPs and Constraints
Varieties of CSPs

Discrete Variables

Finite domains
- Size \(d \) means \(O(d^n) \) complete assignments.

E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
- E.g., Scheduling: Variables = Job start times.
- Linear constraints solvable
- Nonlinear undecidable

Continuous variables
- E.g., start/end times for Hubble Telescope observations
- Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)
Varieties of CSPs

Discrete Variables
Finite domains

E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)

E.g., Scheduling: Variables = Job start times.

Linear constraints solvable
Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations

Linear constraints solvable in polynomial time by LP methods (see cs170 for a bit of this theory)
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.

E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
Linear constraints solvable
Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
Linear constraints solvable
Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
Boolean satisfiability (NP-complete)
Varieties of CSPs

Discrete Variables
 Finite domains
 Size d means $O(d^n)$ complete assignments.
 E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
Varieties of CSPs

Discrete Variables

Finite domains

Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
Varieties of CSPs

Discrete Variables
 Finite domains
 Size d means $O(d^n)$ complete assignments.
 E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
 E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable

Varieties of CSPs

Discrete Variables
 Finite domains
 Size d means $O(d^n)$ complete assignments.
 E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
 E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable
 Nonlinear undecidable
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable
 Nonlinear undecidable
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments. E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times. Linear constraints solvable Nonlinear undecidable

Continuous variables
Varieties of CSPs

Discrete Variables
 Finite domains
 Size d means $O(d^n)$ complete assignments.
 E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
 E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable
 Nonlinear undecidable

Continuous variables
 E.g., start/end times for Hubble Telescope observations
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
Linear constraints solvable
Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
Linear constraints solvable in polynomial time by LP methods
Varieties of CSPs

Discrete Variables
Finite domains
Size d means $O(d^n)$ complete assignments.
E.g., Boolean CSPs, including
 Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)
E.g., Scheduling: Variables = Job start times.
 Linear constraints solvable
 Nonlinear undecidable

Continuous variables
E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)
Varieties of Constraints

Varieties of Constraints.
Varieties of Constraints

Varieties of Constraints.

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

- $SA \neq \text{green}$

Binary constraints involve pairs of variables, e.g.:

- $SA \neq WA$

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):

- E.g., red is better than green
- Often represented as cost for assignment
- Gives constrained optimization problems

(We'll ignore these until we get to Bayes' nets)
Varieties of Constraints

Varieties of Constraints.
Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:
Varieties of Constraints

Varieties of Constraints.
Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]
Varieties of Constraints

Varieties of Constraints.

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.
Varieties of Constraints.

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):
Varieties of Constraints

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green} \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):

E.g., red is better than green
Varieties of Constraints

Varieties of Constraints.

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):

E.g., red is better than green

Often represented as cost for assignment
Varieties of Constraints

Varieties of Constraints.
Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq \text{green}.$$

Binary constraints involve pairs of variables, e.g.:

$$SA \neq \text{WA}$$

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):
E.g., red is better than green
Often represented as cost for assignment
Gives constrained optimization problems
Varieties of Constraints

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

\[SA \neq \text{green}. \]

Binary constraints involve pairs of variables, e.g.:

\[SA \neq WA \]

Higher-order constraints involve 3 or more variables: e.g., cryptoarithmetic column constraints.

Preferences (soft constraints):
E.g., red is better than green
Often represented as cost for assignment
Gives constrained optimization problems
(We’ll ignore these until we get to Bayes’ nets)
Real-World CSPs

Assignment problems: e.g., who teaches what class
Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Circuit layout
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Circuit layout
Fault diagnosis
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Circuit layout
Fault diagnosis
....lots more!
Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Transportation scheduling
Factory scheduling
Circuit layout
Fault diagnosis
....lots more!

Many real-world problems involve real-valued variables...
Solving CSPs
Standard search formulation of CSPs
Standard Search Formulation

Standard search formulation of CSPs
Standard search formulation of CSPs
States defined by the values assigned so far (partial assignments)
Standard Search Formulation

Standard search formulation of CSPs
States defined by the values assigned so far
(partial assignments)
 Initial state: the empty assignment,
Standard Search Formulation

Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment,
 Successor function: assign a value to an unassigned variable
Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)

Initial state: the empty assignment,

Successor function: assign a value to an unassigned variable
Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment,
 Successor function: assign a value to an unassigned variable

Goal test: the current assignment is complete and satisfies all constraints.
Standard search formulation of CSPs

States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment,
 Successor function: assign a value to an unassigned variable

Goal test: the current assignment is complete and satisfies all constraints.
Standard search formulation of CSPs
States defined by the values assigned so far (partial assignments)
 Initial state: the empty assignment,
 Successor function: assign a value to an unassigned variable
Goal test: the current assignment is complete and satisfies all constraints.
We’ll start with the straightforward, naive approach, then improve it
Search Methods

What would BFS do?

What problems does naive search have?
Search Methods

What would BFS do?
What would DFS do?
Search Methods

What would BFS do?
What would DFS do?
What problems does naive search have?
Video of Demo Coloring – DFS
Backtracking Search
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.

Variable assignments are commutative, so fix ordering
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green]

Idea 2: Check constraints as you go.
 I.e. consider values which do not conflict with previous assignments
 Might have to do some computation to check the constraints

"Incremental goal test"

Depth-first search with these two improvements is called backtracking search (not the best name)

Can solve n-queens for \(n \approx 25 \)
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.

Variable assignments are commutative, so fix ordering

I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step

Idea 2: Check constraints as you go.
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step

Idea 2: Check constraints as you go.
I.e. consider values which do not conflict
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step

Idea 2: Check constraints as you go.
I.e. consider values which do not conflict with previous assignments
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.
Variable assignments are commutative, so fix ordering
I.e., [WA = red then NT = green] same same
[NT = green then WA = red]
Assign single variable at each step

Idea 2: Check constraints as you go.
I.e. consider values which do not conflict with previous assignments
Might have to do some computation to check the constraints
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.

Variable assignments are commutative, so fix ordering

I.e., \[WA = \text{red} \text{ then } NT = \text{green}\] same same

\[NT = \text{green} \text{ then } WA = \text{red}\]

Assign single variable at each step

Idea 2: Check constraints as you go.

I.e. consider values which do not conflict with previous assignments

Might have to do some computation to check the constraints

“Incremental goal test”
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs.

Idea 1: One variable at a time.
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same same
 [NT = green then WA = red]
 Assign single variable at each step

Idea 2: Check constraints as you go.
 I.e. consider values which do not conflict with previous assignments
 Might have to do some computation to check the constraints
 "Incremental goal test"

Depth-first search with these two improvements is called backtracking search (not the best name)
Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time.

Variable assignments are commutative, so fix ordering.

I.e., \([\text{WA} = \text{red} \text{ then } \text{NT} = \text{green}]\) same same

\([\text{NT} = \text{green} \text{ then } \text{WA} = \text{red}]\)

Assign single variable at each step

Idea 2: Check constraints as you go.

I.e. consider values which do not conflict with previous assignments.

Might have to do some computation to check the constraints

“Incremental goal test”

Depth-first search with these two improvements is called **backtracking search** (not the best name)

Can solve n-queens for \(n \approx 25\)
Backtracking Example
Backtracking Example
Backtracking Example
Backtracking Example
Backtracking Example
Backtracking Search

\[
\text{function } \textsc{Backtracking-Search}(csp) \text{ returns solution/failure } \\
\text{return } \textsc{Recursive-Backtracking}([], csp)
\]

\[
\text{function } \textsc{Recursive-Backtracking}(assignment, csp) \text{ returns soln/failure } \\
\text{if assignment is complete then return assignment} \\
var \leftarrow \textsc{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp) \\
\text{for each value in Order-Domain-Values(var, assignment, csp) do} \\
\text{if value is consistent with assignment given Constraints[csp] then} \\
\quad \text{add } \{\text{var} = \text{value}\} \text{ to assignment} \\
\quad \text{result } \leftarrow \textsc{Recursive-Backtracking}(assignment, csp) \\
\text{if result } \neq \text{failure then return result} \\
\text{remove } \{\text{var} = \text{value}\} \text{ from assignment} \\
\text{return failure}
\]
Backtracking = DFS + variable-ordering + fail-on-violation
What are the choice points?
Video of Demo Coloring – Backtracking
CSP-Backtracking Search

CSP-Backtracking = DFS + variable-ordering + fail-on-violation

One optimization possibility: Pick "better" variable orderings and value orderings.
CSP-Backtracking Search

CSP-Backtracking = DFS + variable-ordering + fail-on-violation
CSP-Backtracking Search

CSP-Backtracking = DFS + variable-ordering + fail-on-violation
One optimization possibility: Pick “better” variable orderings and value orderings.
Some issues.

Consider the partially completed CSP assignment.
Consider the partially completed CSP assignment.
Decisions made bottom-up, left-to-right.
Some issues.

Consider the partially completed CSP assignment.
Decisions made bottom-up, left-to-right. Let X be the decision is obviously doomed in the current assignment.
Some issues.

Consider the partially completed CSP assignment.
Decisions made bottom-up, left-to-right. Let X be the decision is obviously doomed in the current assignment.
What is X?
Some issues.

Consider the partially completed CSP assignment.

Decisions made bottom-up, left-to-right. Let X be the decision is obviously doomed in the current assignment.

What is X?

Bonus: How many decisions before CSP-Backtracking search realizes its error?
Improving Backtracking

General-purpose ideas give huge gains in speed
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
Which variable should be assigned next?
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
Which variable should be assigned next?
In what order should its values be tried?
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

Filtering:
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
Which variable should be assigned next?
In what order should its values be tried?

Filtering:
Can we detect inevitable failure early?
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
Which variable should be assigned next?
In what order should its values be tried?

Filtering:
Can we detect inevitable failure early?

Structure:
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

Filtering:
 Can we detect inevitable failure early?

Structure:
 Can we exploit the problem structure?
Next Time.

Heuristic improvements to CSP search.