Non-Deterministic Search

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' \mid s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

For MDPs, we want an optimal policy π^*: $S \rightarrow A$.
- A policy π gives an action for each state.
- An optimal policy is one that maximizes expected utility if followed.
- An explicit policy defines a reflex agent.

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s.
Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once

- Why discount?
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge

- Example: discount of 0.5
 - $U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3$
 - $U([1,2,3]) < U([3,2,1])$
Solving MDPs
Racing Search Tree
Racing Search Tree
Racing Search Tree

- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Optimal Quantities

- The value (utility) of a state s:

 $V^*(s) = \text{expected utility starting in } s \text{ and acting optimally}$

- The value (utility) of a q-state (s,a):

 $Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally}$

- The optimal policy:

 $\pi^*(s) = \text{optimal action from state } s$
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Q-VALUES AFTER 100 ITERATIONS
Values of States

- Recursive definition of value:

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Bellman Equations

- Recursive definition of value:
\[V^*(s) = \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')] \]

- Bellman Equation:
 Necessary condition for optimality in optimization problems formulated as **Dynamic Programming**

- Dynamic Programming:
 Process to simplify an optimization problem by breaking it down into an optimal substructure.
Key idea: time-limited values

Define \(V_k(s) \) to be the optimal value of \(s \) if the game ends in \(k \) more time steps

- Equivalently, it’s what a depth-\(k \) expectimax would give from \(s \)
$k=0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 1 \)

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k=6\)

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=7$

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=10$

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=11$

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k = 12 \]

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do
Example: Value Iteration

<table>
<thead>
<tr>
<th>V_0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
</table>

S: 1
F: $0.5 \times 2 + 0.5 \times 2 = 2$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$
Example: Value Iteration

Assume no discount!

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

Assume no discount!
Example: Value Iteration

\[V_2 \]

\[
\begin{array}{c}
S: 1+2=3 \\
F: \\
0.5 \times (2+2) + 0.5 \times (2+1) = 3.5 \\
\end{array}
\]

\[V_1 \]

\[
\begin{array}{ccc}
2 & 1 & 0 \\
\end{array}
\]

\[V_0 \]

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\end{array}
\]

\[\text{Assume no discount!} \]

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
Example: Value Iteration

\[
V_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
V_1 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

\[
V_2 = \begin{bmatrix} 3.5 & 2.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}
\]

Assume no discount!

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
Convergence*

- How do we know the V_k vectors are going to converge?

- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros.
 - That last layer is at best all R_{MAX}.
 - It is at worst R_{MIN}.
 - But everything is discounted by γ^k that far out.
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
 - So as k increases, the values converge.
Policy Extraction
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$

- How should we act?
 - It’s not obvious!

- We need to do a mini-expectimax (one step)

\[
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
\]

- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!
 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!
Let’s think.

- Take a minute, think about value iteration.
- Write down the biggest question you have about it.
Policy Methods
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A) \) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=100$

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Policy Iteration

- Alternative approach for optimal values:

 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence

 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values

- Repeat steps until policy converges

- This is policy iteration

 - It’s still optimal!

 - Can converge (much) faster under some conditions
Policy Evaluation
Fixed Policies

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - ... though the tree’s value would depend on which policy we fixed.

Do the optimal action

- Do what π says to do

- Expectimax trees max over all actions to compute the optimal values.
- If we fixed some policy $\pi(s)$, then the tree would be simpler – only one action per state.
 - ... though the tree’s value would depend on which policy we fixed.
Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy

- Define the utility of a state s, under a fixed policy π:
 $V_\pi(s) =$ expected total discounted rewards starting in s and following π

- Recursive relation (one-step look-ahead / Bellman equation):

$$V_\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_\pi(s')]$$
Policy Evaluation

- How do we calculate the V’s for a fixed policy \(\pi \)?

- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

\[
\begin{align*}
V_0^\pi(s) &= 0 \\
V_{k+1}^\pi(s) &\leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\end{align*}
\]

- Efficiency: \(O(S^2) \) per iteration

- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)
Example: Policy Evaluation

Always Go Right

Always Go Forward
Example: Policy Evaluation

Always Go Right

Always Go Forward
Policy Iteration
Policy Iteration

- **Evaluation:** For fixed current policy π, find values with policy evaluation:
 - Iterate until values converge:
 \[
 V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]
 \]

- **Improvement:** For fixed values, get a better policy using policy extraction
 - One-step look-ahead:
 \[
 \pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]
 \]
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)

- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don’t track the policy, but taking the max over actions implicitly recomputes it

- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we’re done)

- Both are dynamic programs for solving MDPs
Summary: MDP Equations

- Value iteration equation:
 $$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Policy evaluation equation:
 $$V^\pi_{k+1}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V^\pi_k(s') \right]$$

- Policy iteration equation:
 $$\pi_{i+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^\pi_i(s') \right]$$
Summary: MDP Algorithms

- So you want to….
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)

- These all look the same!
 - They basically are – they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions
The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal
Next Time: Reinforcement Learning!