
CS 188
Spring 2020 Exam Prep 2 Solutions
Q1. Formulation: Holiday Shopping
You are programming a holiday shopping robot that will drive from store to store in order to buy all the gifts
on your shopping list. You have a set of N gifts G = {g1, g2, . . . gN} that must be purchased. There are M
stores, S = {s1, s2, . . . sM} each of which stocks a known inventory of items: we write gk ∈ si if store si stocks
gift gk. Shops may cover more than one gift on your list and will never be out of the items they stock. Your
home is the store s1, which stocks no items.

The actions you will consider are travel-and-buy actions in which the robot travels from its current location si
to another store sj in the fastest possible way and buys whatever items remaining on the shopping list that are
sold at sj . The time to travel-and-buy from si to sj is t(si, sj). You may assume all travel-and-buy actions
represent shortest paths, so there is no faster way to get between si and sj via some other store. The robot
begins at your home with no gifts purchased. You want it to buy all the items in as short a time as possible
and return home.

For this planning problem, you use a state space where each state is a pair (s, u) where s is the current location
and u is the set of unpurchased gifts on your list (so g ∈ u indicates that gift g has not yet been purchased).

(a) How large is the state space in terms of the quantities defined above?

M × 2N . You are in one of M places (simple index from 1 to M), and have not purchased some subset of
N items (binary vector of size N).

(b) For each of the following heuristics, which apply to states (s, u), circle whether it is admissible, consistent,
neither, or both. Assume that the minimum of an empty set is zero.

([neither] / admissible / consistent / both)
The shortest time from the current location to any other store:

mins′ 6=s t(s, s
′)

(neither / admissible / consistent / [both])
The time to get home from the current location:

t(s, s1)

(neither / admissible / consistent / [both])
The shortest time to get to any store selling any unpurchased gift:

ming∈u(mins′:g∈s′ t(s, s
′))

(neither / [admissible] / consistent / both)
The shortest time to get home from any store selling any unpurchased gift:

ming∈u(mins′:g∈s′ t(s
′, s1))

([neither] / admissible / consistent / both)
The total time to get each unpurchased gift individually:∑

g∈u(mins′:g∈s′ t(s, s
′))

([neither] / admissible / consistent / both)
The number of unpurchased gifts times the shortest store-to-store time:
|u|(minsi,sj 6=si t(si, sj))

Remember, a consistent heuristic doesn’t decrease from state to state by more than it actually costs to
get from state to state. And of course, a heuristic is admissible if it is consistent. If you’re confused,
remember: the problem defines the minimum of an empty set as 0.

1. This heuristic does not return 0 in the goal state (s1, ∅), since it gives the minimum distance to any
store other than the current one.

2. We’ll always need to get home from any state; the distance to home from home is 0; and this heuristic
does not decrease by more than it costs to get from state to state.

1

3. We’ll always need to get that last unpurchased item, and taking the min distance store guarantees
that we underestimate how much distance we actually have to travel. It is consistent because the
heuristic never diminishes by more than what is travelled.

4. We’ll always need to get home from getting the last unpurchased item, and taking the min under-
estimates the actual requirement. What makes this heuristic inconsistent is that when we visit the
last store to pick up the last unfinished item, the value of the heuristic goes to 0. Let’s say the
graph looks like this: s3 --1--> s2 ----5----> s1, with s2 containing the last item. From s3, the
heuristic is 5, but from s2, the heuristic is now 0, meaning that traveling from s3 to s2 decreases the
heuristic by 5 but the actual cost is only 1.

5. This can overestimate the actual amount of work required.

6. Same.

2

You have waited until very late to do your shopping, so you decide to send an swarm of R robot minions to
shop in parallel. Each robot moves at the same speed, so the same store-to-store times apply. The problem is
now to have all robots start at home, end at home, and for each item to have been bought by at least one robot
(you don’t have to worry about whether duplicates get bought). Hint: consider that robots may not all arrive
at stores in sync.

(c) Give a minimal state space for this search problem (be formal and precise!)

We need the location of each robot at each time. At a given time, a robot can either be at one of
M stores, or in any of (T − 1)M transition locations, where T is the maximum travel distance between
two stores. Thus, the location of each robot takes (MT)R. We also need the set of items purchased (2N).
Therefore, the size of each state is: (MT)R × 2N .

One final task remains: you still must find your younger brother a stuffed Woozle, the hot new children’s toy.
Unfortunately, no store is guaranteed to stock one. Instead, each store si has an initial probability pi of still
having a Woozle available. Moreover, that probability drops exponentially as other buyers scoop them up, so
after t time has passed, si’s probability has dropped to βtpi. You cannot simply try a store repeatedly; once it
is out of stock, that store will stay out of stock. Worse, you only have a single robot that can handle this kind
of uncertainty! Phrase the problem as a single-agent MDP for planning a search policy for just this one gift (no
shopping lists). You receive a single reward of +1 upon successfully buying a Woozle, at which point the MDP
ends (don’t worry about getting home); all other rewards are zeros. You may assume a discount of 1.

(d) Give a minimal state space for this MDP (be formal and precise!)

Which stores have been checked: 2M

Whether Woozle has been bought: 2
Current time: T .

We may also want to keep track of the current location (M), but since there is no reward for traveling,
we don’t have to model that aspect of the problem.

3

Q2. CSPs: Time Management
Two of our TAs, Arjun and Dave, are making their schedules for a busy morning. There are five tasks to be
carried out:

(F) Pick up food for the group’s research seminar, which, sadly, takes one precious hour.
(H) Prepare homework questions, which takes 2 consecutive hours.
(P) Prepare the PR2 (robot that Pieter uses for research) for a group of preschoolers’ visit, which takes one
hour.
(S) Lead the research seminar, which takes one hour.
(T) Teach the preschoolers about the PR2 robot, which takes 2 consecutive hours.

The schedule consists of one-hour slots: 8am-9am, 9am-10am, 10am-11am, 11am-12pm. The requirements for
the schedule are as follows:

1. In any given time slot each TA can do at most one task (F, H, P, S, T).

2. The PR2 preparation (P) should happen before teaching the preschoolers (T).

3. The food should be picked up (F) before the seminar (S).

4. The seminar (S) should be finished by 10am.

5. Arjun is going to deal with food pick up (F) since he has a car.

6. The TA not leading the seminar (S) should still attend, and hence cannot perform another task (F, T, P,
H) during the seminar.

7. The seminar (S) leader does not teach the preschoolers (T).

8. The TA who teaches the preschoolers (T) must also prepare the PR2 robot (P).

9. Preparing homework questions (H) takes 2 consecutive hours, and hence should start at or before 10am.

10. Teaching the preschoolers (T) takes 2 consecutive hours, and hence should start at or before 10am.

To formalize this problem as a CSP, use the variables F, H, P, S and T. The values they take on indicate the
TA responsible for it, and the starting time slot during which the task is carried out (for a task that spans 2
hours, the variable represents the starting time, but keep in mind that the TA will be occupied for the next hour
also - make sure you enforce constraint (a)!). Hence there are eight possible values for each variable, which we
will denote by A8, A9, A10, A11, D8, D9, D10, D11, where the letter corresponds to the TA and the number
corresponds to the time slot. For example, assigning the value of A8 to a variables means that this task is
carried about by Arjun from 8am to 9am.

(a) What is the size of the state space for this CSP?

85.

(b) Which of the statements above include unary constraints?

(d), (e), (i), (j). (i) and (j) are both unary constraints, and binary constraints in a single sentence.

(c) In the table below, enforce all unary constraints by crossing out values in the table below.

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

4

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

(d) Start from the table above, select the variable S and assign the value A9 to it. Perform forward checking
by crossing out values in the table below.

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

(e) Based on the result of (d), what variable will we choose to assign next based on the MRV heuristic (breaking
ties alphabetically)? Assign the first possible value to this variable, and perform forward checking by
crossing out values in the table below.

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

Variable F is selected and gets assigned value A8 .

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

Have we arrived at a dead end (i.e., has any of the domains become empty)?

No.

(f) We return to the result from enforcing just the unary constraints, which we did in (c). Select the variable
S and assign the value A9. Enforce arc consistency by crossing out values in the table below.

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

F A8 A9 A10 A11 D8 D9 D10 D11
H A8 A9 A10 A11 D8 D9 D10 D11
P A8 A9 A10 A11 D8 D9 D10 D11
S A8 A9 A10 A11 D8 D9 D10 D11
T A8 A9 A10 A11 D8 D9 D10 D11

(g) Compare your answers to (d) and to (f). Does arc consistency remove more values or less values than
forward checking does? Explain why.

Arc consistency removes more values. It’s because AC checks consistency between any pair of variables,
while FC only checks the relationship between pairs of assigned and unassigned variables.

(h) Check your answer to (f). Without backtracking, does any solution exist along this path? Provide the
solution(s) or state that there is none.

AC along this path gives 1 solution: F: A8 H: A10 P: D8 S: A9 T: D10

5

