1 Learning in Gridworld

Consider the example gridworld that we looked at in lecture. We would like to use TD learning and q-learning to find the values of these states.

Suppose that we have the following observed transitions:
(B, East, C, 2), (C, South, E, 4), (C, East, A, 6), (B, East, C, 2)

The initial value of each state is 0. Assume that $\gamma = 1$ and $\alpha = 0.5$.

(a) What are the learned values from TD learning after all four observations?

$V(B) = 3.5$
$V(C) = 4$
All other states have a value of 0.

(b) What are the learned Q-values from Q-learning after all four observations?

$Q(B, East) = 3$
$Q(C, South) = 2$
$Q(C, East) = 3$
All other q-states have a value of 0.
Q2. MDPs and RL: Go Bears!

Cal’s Football team is playing against UCLA for the big homecoming game Saturday night. With a lot of losses in the season so far, Cal needs to switch up their strategy to get any hope of winning this game.

Luckily, the Quarterback (Joe) is a star student in CS188 and has decided to model the game as a Markov Decision Process. There are only two states – the *Play* state (shown as the field in the diagram) and the *Win* State. Although the connectivity of the states is known, the probabilities for each are not.

There are no actions available from the *Win* state – the game simply ends.

![Diagram of MDP states and transitions]

From the *Play* state there are three actions: *Run*, *Pass*, and *HailMary*. The connectivity of each action to the two states is shown above.

Reward Values:

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>State’</th>
<th>R(s,a,s’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>Run</td>
<td>Play</td>
<td>2</td>
</tr>
<tr>
<td>Play</td>
<td>Pass</td>
<td>Play</td>
<td>4</td>
</tr>
<tr>
<td>Play</td>
<td>Pass</td>
<td>Win</td>
<td>10</td>
</tr>
<tr>
<td>Play</td>
<td>HailMary</td>
<td>Play</td>
<td>0</td>
</tr>
<tr>
<td>Play</td>
<td>HailMary</td>
<td>Win</td>
<td>100</td>
</tr>
</tbody>
</table>

(a) **Learning Values** Joe wants to learn the value of the play state so he can estimate the outcome of the game. He uses a discount factor of 0.5 for all questions below.

(i) Joe first uses temporal difference value learning to learn the value of the *play* state. After initializing his beliefs to 0, he sees two episodes while in tape review. With a learning rate α of 0.5 what value of the state *play* does he learn?
(ii) Coach Tedford decides to give Joe a fixed policy instead:

$$\pi(s) = \text{Run}$$

What value for the state $play$ would Joe calculate if he ran value iteration until convergence? Keep in mind that $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 2 - \left(\frac{1}{2}\right)^n = 1 + 0.5 + 0.25 + 0.125 + ...$

$$V(play) = 2 + 0.5 \times (2 + 0.5 \times (2 + 0.5 \times (2 + 0.5 \times ...)))$$

Then

$$V(play) = 2 + 1 + 0.5 + 0.25 + 0.125... = 4$$

$$V_\pi(play) = 4$$

(b) Game Time

Joe watches the next lecture video from class and now wants to use Q-learning to compute his optimal strategy.

(i) First Joe uses temporal difference Q-learning to learn the values of the Q nodes. He sees three episodes during the first quarter:

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>State'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play</td>
<td>Run</td>
<td>Play</td>
</tr>
<tr>
<td>Play</td>
<td>Hail Mary</td>
<td>Play</td>
</tr>
<tr>
<td>Play</td>
<td>Pass</td>
<td>Win</td>
</tr>
</tbody>
</table>

Update the Q node values after processing each episode (in order). Use a learning rate of 0.5 and a discount rate of 0.5.

$$Q(play, run) = 2 + 0.5 \times 0 = 2$$

$$Q(play, hail) = 0 + 0.5 \times 1 = 0.5$$

$$Q(play, pass) = 10 + 0.5 \times 0 = 10$$

Remember you need to update $V(play)$ as this process continues. and learning rate of alpha of 0.5 means all the above values get averaged against 0 when stored.

(c) Q learning is going well, but it’s taking too much time. Thankfully Oski shows up with some special information – he has watched so many games that he know’s the true transition probabilities! Here they are:
Now with these probabilities, what is the optimal policy when there is one time step left? The value:

\[Q(\text{play}, \text{hail}) = 0.1 \cdot (100) + 0.9 \cdot (0) = 10 \]

\[\pi_{k=1}(\text{play}) = \text{hail mary} \]
\[V_{k=1}(\text{play}) = 10 \]

For two time steps left, what is the optimal policy with discount factor 0.5? Hint: you can use your value above to aid in this computation.

\[Q(\text{play}, \text{hail}) = 0.1 \cdot (100 + 0.5 \cdot 0) + 0.9 \cdot (0 + 0.5 \cdot 10) = 14.5 \]

\[\pi_{k=2}(\text{play}) = \text{hail mary} \]
\[V_{k=2}(\text{play}) = 14.5 \]