
CS 188
Spring 2020 Section Handout 6

Temporal Difference Learning
Temporal difference learning (TD learning) uses the idea of learning from every experience, rather than simply
keeping track of total rewards and number of times states are visited and learning at the end as direct evaluation
does. In policy evaluation, we used the system of equations generated by our fixed policy and the Bellman
equation to determine the values of states under that policy (or used iterative updates like with value iteration).

V π(s) =
∑
s′

T (s, π(s), s′)[R(s, π(s), s′) + γV π(s′)]

Each of these equations equates the value of one state to the weighted average over the discounted values of that
state’s successors plus the rewards reaped in transitioning to them. TD learning tries to answer the question
of how to compute this weighted average without the weights, cleverly doing so with an exponential moving
average. We begin by initializing ∀s, V π(s) = 0. At each timestep, an agent takes an action π(s) from a state
s, transitions to a state s′, and receives a reward R(s, π(s), s′). We can obtain a sample value by summing
the received reward with the discounted current value of s′ under π:

sample = R(s, π(s), s′) + γV π(s′)

This sample is a new estimate for V π(s). The next step is to incorporate this sampled estimate into our existing
model for V π(s) with the exponential moving average, which adheres to the following update rule:

V π(s)← (1− α)V π(s) + α · sample

Above, α is a parameter constrained by 0 ≤ α ≤ 1 known as the learning rate that specifies the weight we
want to assign our existing model for V π(s), 1−α, and the weight we want to assign our new sampled estimate,
α. It’s typical to start out with learning rate of α = 1, accordingly assigning V π(s) to whatever the first sample
happens to be, and slowly shrinking it towards 0, at which point all subsequent samples will be zeroed out and
stop affecting our model of V π(s).

Let’s stop and analyze the update rule for a minute. Annotating the state of our model at different points in
time by defining V πk (s) and samplek as the estimated value of state s after the kth update and the kth sample
respectively, we can reexpress our update rule:

V πk (s)← (1− α)V πk−1(s) + α · samplek

This recursive definition for V πk (s) happens to be very interesting to expand:

V πk (s) ← (1− α)V πk−1(s) + α · samplek
V πk (s) ← (1− α)[(1− α)V πk−2(s) + α · samplek−1] + α · samplek
V πk (s) ← (1− α)2V πk−2(s) + (1− α) · α · samplek−1 + α · samplek

...

V πk (s) ← (1− α)kV π0 (s) + α · [(1− α)k−1 · sample1 + . . .+ (1− α) · samplek−1 + samplek]

V πk (s) ← α · [(1− α)k−1 · sample1 + . . .+ (1− α) · samplek−1 + samplek]

Because 0 ≤ (1 − α) ≤ 1, as we raise the quantity (1 − α) to increasingly larger powers, it grows closer and
closer to 0. By the update rule expansion we derived, this means that older samples are given exponentially less

1



weight, exactly what we want since these older samples are computed using older (and hence worse) versions of
our model for V π(s)! This is the beauty of temporal difference learning - with a single straightfoward update
rule, we are able to:

• learn at every timestep, hence using information about state transitions as we get them since we’re using
iteratively updating versions of V π(s′) in our samples rather than waiting until the end to perform any
computation.

• give exponentially less weight to older, potentially less accurate samples.

• converge to learning true state values much faster with fewer episodes than direct evaluation.

Q-Learning
Both direct evaluation and TD learning will eventually learn the true value of all states under the policy they
follow. However, they both have a major inherent issue - we want to find an optimal policy for our agent,
which requires knowledge of the q-values of states. To compute q-values from the values we have, we require a
transition function and reward function as dictated by the Bellman equation.

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

Resultingly, TD learning or direct evaluation are typically used in tandem with some model-based learning to
acquire estimates of T and R in order to effectively update the policy followed by the learning agent. This
became avoidable by a revolutionary new idea known as Q-learning, which proposed learning the q-values of
states directly, bypassing the need to ever know any values, transition functions, or reward functions. As a
result, Q-learning is entirely model-free. Q-learning uses the following update rule to perform what’s known as
q-value iteration:

Qk+1(s, a)←
∑
s′

T (s, a, s′)[R(s, a, s′) + γmax
a′

Qk(s′, a′)]

Note that this update is only a slight modification over the update rule for value iteration. Indeed, the only real
difference is that the position of the max operator over actions has been changed since we select an action before
transitioning when we’re in a state, but we transition before selecting a new action when we’re in a q-state.

With this new update rule under our belt, Q-learning is derived essentially the same way as TD learning, by
acquiring q-value samples:

sample = R(s, a, s′) + γmax
a′

Q(s′, a′)

and incoporating them into an exponential moving average.

Q(s, a)← (1− α)Q(s, a) + α · sample

As long as we spend enough time in exploration and decrease the learning rate α at an appropriate pace,
Q-learning learns the optimal q-values for every q-state. This is what makes Q-learning so revolutionary -
while TD learning and direct evaluation learn the values of states under a policy by following the policy before
determining policy optimality via other techniques, Q-learning can learn the optimal policy directly even by
taking suboptimal or random actions. This is called off-policy learning (contrary to direct evaluation and
TD learning, which are examples of on-policy learning).

2



Q1. Pacman with Feature-Based Q-Learning
We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too
massive to hold in memory. To solve this, we will switch to feature-based representation of Pacman’s state.

(a) We will have two features, Fg and Fp, defined as follows:

Fg(s, a) = A(s) +B(s, a) + C(s, a)

Fp(s, a) = D(s) + 2E(s, a)

where

A(s) = number of ghosts within 1 step of state s

B(s, a) = number of ghosts Pacman touches after taking action a from state s

C(s, a) = number of ghosts within 1 step of the state Pacman ends up in after taking action a

D(s) = number of food pellets within 1 step of state s

E(s, a) = number of food pellets eaten after taking action a from state s

For this pacman board, the ghosts will always be stationary, and the action space is {left, right, up, down, stay}.

calculate the features for the actions ∈ {left, right, up, stay}

(b) After a few episodes of Q-learning, the weights are wg = −10 and wp = 100. Calculate the Q value for
each action ∈ {left, right, up, stay} from the current state shown in the figure.

(c) We observe a transition that starts from the state above, s, takes action up, ends in state s′ (the state
with the food pellet above) and receives a reward R(s, a, s′) = 250. The available actions from state s′ are
down and stay. Assuming a discount of γ = 0.5, calculate the new estimate of the Q value for s based on
this episode.

(d) With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

3



Q2. Q-learning
Consider the following gridworld (rewards shown on left, state names shown on right).

Rewards State names

From state A, the possible actions are right(→) and down(↓). From state B, the possible actions are left(←)
and down(↓). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square
we collect the reward specified by the number on the square and enter the end-of-game absorbing state X. We
also know that the discount factor γ = 1, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

Episode 1 (E1)
s a s′ r
A ↓ G1 0
G1 exit X 10

Episode 2 (E2)
s a s′ r
B ↓ G2 0
G2 exit X 1

Episode 3 (E3)
s a s′ r
A → B 0
B ↓ G2 0
G2 exit X 1

Episode 4 (E4)
s a s′ r
B ← A 0
A ↓ G1 0
G1 exit X 10

(a) Consider using temporal-difference learning to learn V (s). When running TD-learning, all values are ini-
tialized to zero.
For which sequences of episodes, if repeated infinitely often, does V (s) converge to V ∗(s) for all states s?

(Assume appropriate learning rates such that all values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other

(b) Consider using Q-learning to learn Q(s, a). When running Q-learning, all values are initialized to zero.
For which sequences of episodes, if repeated infinitely often, does Q(s, a) converge to Q∗(s, a) for all state-
action pairs (s, a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other

4


