S 188 Introduction to
gpring 2021 A;tiﬁcialtlntehigence EX&III Prep 1

Course Overview

Here are some questions for you:

1. What is AI?
2. What can Al do?

3. What do you want to learn from this course?

There are two types of discussion sections:

1. Regular Discussion

2. Exam Prep

There are 5 graded components:

1. Programming Assignments (25%)

2. Electronic Homework Assignments (10%)
3. Written Homework Assignments (10%)

4. Midterm (20%)

5. Final exam (35%)

Q1. n-Queens

Max Friedrich William Bezzel invented the “eight queens puzzle” in 1848: place 8 queens on an 8 X 8 chess board such that
none of them can capture any other. The problem, and the generalized version with n queens on an n X n chess board, has been
studied extensively (a Google Scholar search turns up over 3500 papers on the subject).

Figure 1: Queens can move any number of squares along rows, columns, and diagonals (left); An example solution to the
4-queens problem (right).

(a) Formulate n-queens as a search problem. Have each search state be a board, where each square on the board may or may
not contain a queen. To get started, we’ll allow boards in our state-space to have any configuration of queens (including
boards with more or less than n queens, or queens that are able to capture each other).

Start State:

Goal Test:

Successor Function:

(b) How large is the state-space in this formulation?

(c) One way to limit the size of your state space is to limit what your successor function returns. Reformulate your successor
function to reduce the effective state-space size.

(d) Give a more efficient state space representation. How many states are in this new state space?

Q2. Search

For this problem, assume that all of our search algorithms use tree search, unless specified otherwise.

(a) For each algorithm below, indicate whether the path returned after the modification to the search tree is guaranteed to be
identical to the unmodified algorithm. Assume all edge weights are non-negative before modifications.

(i) Adding additional cost ¢ > 0 to every edge weight.

Yes No
BFs | O O
prs, O O
ucs| O O

(ii) Multiplying a constant w > 0 to every edge weight.

Yes No
BFs | O O
prs, O O
ucs| O O

(b) For this part, two search algorithms are defined to be equivalent if and only if they expand the same states in the same
order and return the same path. Assume all graphs are directed and acyclic.

Assume we have access to costs ¢;; that make running UCS algorithm with these costs ¢;; equivalent to running BES.
How can we construct new costs c:j such that running UCS with these costs is equivalent to running DFS?

O ¢;=0 O =1 O =g
o ¢y = ¢ O ¢j=cj+a (O Not possible

Q3. SpongeBob and Pacman (Search Formulation)

Recall that in Midterm 1, Pacman bought a car, was speeding in Pac-City, and SpongeBob wasn’t able to catch him. Now
Pacman has run out of gas, his car has stopped, and he is currently hiding out at an undisclosed location.

In this problem, you are on SpongeBob’s side, tryin’ to catch Pacman!

There are still p of SpongeBob’s cars in the Pac-city of dimension m by n. In this problem, all of SpongeBob’s cars can move,
with two distinct integer controls: throttle and steering, but Pacman has to stay stationary. Spongebob’s cars can control
both the throttle and steering for each step. Once one of SpongeBob’s cars takes an action which lands it in the same grid as
Pacman, Pacman will be caught and the game ends.

Throttle: ¢; € {1,0, -1}, corresponding to {Gas, Coast, Brake}. This controls the speed of the car by determining its accel-
eration. The integer chosen here will be added to the velocity for the next state. For example, if a SpongeBob car is currently
driving at 5 grid/s and chooses Gas (1) it will be traveling at 6 grid/s in the next turn.

Steering: s; € {1,0,—1}, corresponding to {Turn Left, Go Straight, Turn Right}. This controls the direction of the car. For
example, if a SpongeBob car is facing North and chooses Turn Left, it will be facing West in the next turn.

(a) Suppose you can only control 1 SpongeBob car, and have absolutely no information about the remainder of p — 1
SpongeBob cars, or where Pacman has stopped to hide. Also, the SpongeBob cars can travel up to 6 grid/s so0 < v <6
at all times.

(i) What is the tightest upper bound on the size of state space, if your goal is to use search to plan a sequence of
actions that guarantees Pacman is caught, no matter where Pacman is hiding, or what actions other SpongeBob cars
take. Please note that your state space representation must be able to represent all states in the search space.

(i) What is the maximum branching factor? Your answer may contain integers, m, n.

(iii) Which algorithm(s) is/are guaranteed to return a path passing through all grid locations on the grid, if one exists?

|:| Depth First Tree Search D Breadth First Tree Search
[] Depth First Graph Search [] Breadth First Graph Search

(iv) Is Breadth First Graph Search guaranteed to return the path with the shortest number of time steps, if one exists?

O Yes O No

(b) Now let’s suppose you can control all p SpongeBob cars at the same time (and know all their locations), but you still have
no information about where Pacman stopped to hide

(i) Now, you still want to search a sequence of actions such that the paths of p SpongeBob cars combined pass through
all m * n grid locations. Suppose the size of the state space in part (a) was N, and the size of the state space in
this part is N,. Please select the correct relationship between N, and N;.

O N,=pxN, O N,=pM O N, =)y (O None of the above

(i) Suppose the maximum branching factor in part (a) was b;, and the maximum branching factor in this part is b,.
Please select the correct relationship between b, and b;.

O b,=pxb O b,=ph O b= (O None of the above

