Q1. Bayes Nets and Joint Distributions

(a) Write down the joint probability distribution associated with the following Bayes Net. Express the answer as a product of terms representing individual conditional probabilities tables associated with this Bayes Net:

(b) Draw the Bayes net associated with the following joint distribution: $P(A) \cdot P(B) \cdot P(C|A, B) \cdot P(D|C) \cdot P(E|B, C)$

A

В

E

 $\left(c\right)$

 $\left(D\right)$

(c) Do the following products of factors correspond to a valid joint distribution over the variables A, B, C, D? (Circle FALSE or TRUE.)

(i) FALSE TRUE

 $P(A) \cdot P(B) \cdot P(C|A) \cdot P(C|B) \cdot P(D|C)$

(ii) FALSE

 $P(A) \cdot P(B|A) \cdot P(C) \cdot P(D|B,C)$

(iii) FALSE TRUE

 $P(A) \cdot P(B|A) \cdot P(C) \cdot P(C|A) \cdot P(D)$

(iv)

FALSE TRUE

TRUE

 $P(A|B) \cdot P(B|C) \cdot P(C|D) \cdot P(D|A)$

- (d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write "none" if the given set of factors can't be turned into a joint by the inclusion of exactly one more factor.)
 - (i) $P(A) \cdot P(B|A) \cdot P(C|A) \cdot P(E|B,C,D)$
 - (ii) $P(D) \cdot P(B) \cdot P(C|D,B) \cdot P(E|C,D,A)$

(e) Answer the next questions based off of the Bayes Net below:

All variables have domains of {-1, 0, 1}

- (i) Before eliminating any variables or including any evidence, how many entries does the factor at G have?
- (ii) Now we observe e = 1 and want to query P(D|e = 1), and you get to pick the first variable to be eliminated.
 - Which choice would create the largest factor f_1 ?

• Which choice would create the **smallest** factor f_1 ?

Q2. Bayes Nets: Sampling

Consider the following Bayes Net, where we have observed that B = +b and D = +d.

P((A)
+ <i>a</i>	0.5
-a	0.5

P(B A)		.)
+ <i>a</i>	+b	0.8
+ <i>a</i>	-b	0.2
-a	+b	0.4
-a	-b	0.6

1	P(C B)	27
+b	+c	0.1
		0.1
+b	-c	0.7
-b	+ <i>c</i>	0.7
-b	-c	0.3

	P(D	(A, C)	
+a	+c	+d	0.6
+ <i>a</i>	+c	-d	0.4
+ <i>a</i>	-c	+d	0.1
+ <i>a</i>	-c	_ <i>d</i>	0.9
-a	+c	+d	0.2
-a	+c	_ <i>d</i>	0.8
-a	-c	+d	0.5
-a	-c	-d	0.5

(a) Consider doing Gibbs sampling for this example. Assume that we have initialized all variables to the values +a, +b, +c, +d. We then unassign the variable C, such that we have A = +a, B = +b, C = ?, D = +d. Calculate the probabilities for new values of C at this stage of the Gibbs sampling procedure.

P(C = +c at the next step of Gibbs sampling) = P(C = -c at the next step of Gibbs sampling) =

- (b) Consider a sampling scheme that is a hybrid of rejection sampling and likelihood-weighted sampling. Under this scheme, we first perform rejection sampling for the variables A and B. We then take the sampled values for A and B and extend the sample to include values for variables C and D, using likelihood-weighted sampling.
 - (i) Below is a list of candidate samples. Mark the samples that would be rejected by the rejection sampling portion of the hybrid scheme.

(ii) To decouple from part (i), you now receive a *new* set of samples shown below. Fill in the weights for these samples under our hybrid scheme.

(iii) Use the weighted samples from part (ii) to calculate an estimate for P(+a|+b,+d).

The estimate of P(+a|+b,+d) is _____

(c)	We now attempt to design an alternative hybrid sampling scheme that combines elements of likelihood-weighted and rejection sampling. For each proposed scheme, indicate whether it is valid, i.e. whether the weighted samples it produces correctly approximate the distribution $P(A, C +b, +d)$.
	 (i) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for the variables C and D. In case of rejection, the values of A and B and the sample weight are thrown away. Sampling then restarts from node A. Valid \(\sigma\) Invalid
	 (ii) First collect a likelihood-weighted sample for the variables A and B. Then switch to rejection sampling for the variables C and D. In case of rejection, the values of A and B and the sample weight are retained. Sampling then restarts from node C. Valid \(\sigma\) Invalid