CS 188 Spring 2021 Introduction to Final Review ML

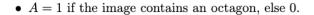
Q1. Machine Learning: Potpourri

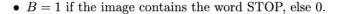
(a)	What it the minimum number of parameters needed to fully model a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class where each feature can possibly take on k distinct values.							
b) Under the Naive Bayes assumption, what is the minimum number of parameters need a joint distribution $P(Y, F_1, F_2,, F_n)$ over label Y and n features F_i ? Assume binary class feature can take on k distinct values.								
(c)		ect that you are overfitting with your Naive Bage strength k in Laplace Smoothing?	with Laplace Smoothing. How would you					
	0	Increase k	0	Decrease k				
d)	While using Naive Bayes with Laplace Smoothing, increasing the strength k in Laplace Smoothing can:							
		Increase training error		Decrease training error				
		Increase validation error		Decrease validation error				
(e)	e) It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable feature space.							
	0	True	0	False				
(f)) If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decis boundary.							
	0	True	0	False				
(g)	In multicle feature ve	lass perceptron, every weight w_y can be written ectors.	ı as	a linear combination of the training data				
	0	True	0	False				
h)	For binary	y class classification, logistic regression produces	a lin	near decision boundary.				

		0	True		0	False			
(i)) In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.								
		0	True		0	False			
(j)	(i)	(i) You train a linear classifier on 1,000 training points and discover that the training accuracy is 50%. Which of the following, if done in isolation, has a good chance of improving your traaccuracy?							
			\square Add novel features	☐ Train on m	ore	data	$\hfill\Box$ Train on less data		
	(ii)	(ii) You now try training a neural network but you find that the training accuracy is still very low. When of the following, if done in isolation, has a good chance of improving your training accuracy?							
			☐ Add more hidden layers			Add more u	nits to the hidden layers		

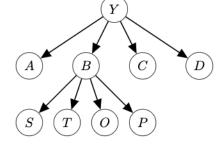
Q2. A Nonconvolutional Nontrivial Network

You have a robotic friend MesutBot who has trouble passing Recaptchas (and Turing tests in general). MesutBot got a 99.99\% on the last midterm because he could not determine which squares in the image contained stop signs. To help him ace the final, you decide to design a few classifiers using the below features.





- -S=1 if the image contains the letter S, else 0.
- -T=1 if the image contains the letter T, else 0.
- -O = 1 if the image contains the letter O, else 0.
- P = 1 if the image contains the letter P, else 0.
- C=1 if the image is more than 50% red in color, else



D = 1 if the image contains a post, else 0.

(a) First, we use a Naive Bayes-inspired approach to determine which images have stop signs based on the features and Bayes Net above. We use the following features to predict Y=1 if the image has a stop sign anywhere, or Y = 0 if it doesn't.

(i) Which expressions would a Naive Bayes model use to predict the label for B if given the values for features S = s, T = t, O = o, P = p? Choose all valid expressions.

- $\Box b = \arg\max_{b} P(b)P(s|b)P(t|b)P(o|b)P(p|b)$ $\Box b = \arg\max_{b} P(s|b)P(t|b)P(o|b)P(p|b)$

- O None

(ii) Which expressions would we use to predict the label for Y with our Bayes Net above? Assume we are given all features except B. So A = a, S = s, T = t, etc. For the below choices, the underscore means we are dropping the value of that variable. So $y, __ = (0, 1)$ would mean y = 0.

- $\Box \ y,__ = \arg\max_{y,b} P(y)P(a|y)P(b|y)P(c|y)P(d|y)P(s|b)P(t|b)P(o|b)P(p|b)$ $\Box \ y,__ = \arg\max_{y,b} P(s)P(t)P(o)P(p)P(a)P(b|s,t,o,p)P(c)P(d)P(y|a,b,c,d)$
- \square First compute $b' = \arg \max_{k}$ of the formula chosen in part (ii).
- Then compute $y = \arg\max_{y} P(y)P(a|y)P(b'|y)P(c|y)P(d|y)$
- \sqcup First compute $b' = \arg \max_{i}$ of the formula chosen in part (ii).

Then compute $y = \arg \max_{y} P(y|a, b', c, d)$

- $\Box y = \arg\max_{y} \sum_{b'} P(y)P(a|y)P(b'|y)P(c|y)P(d|y)P(s|b')P(t|b')P(o|b')P(p|b')$

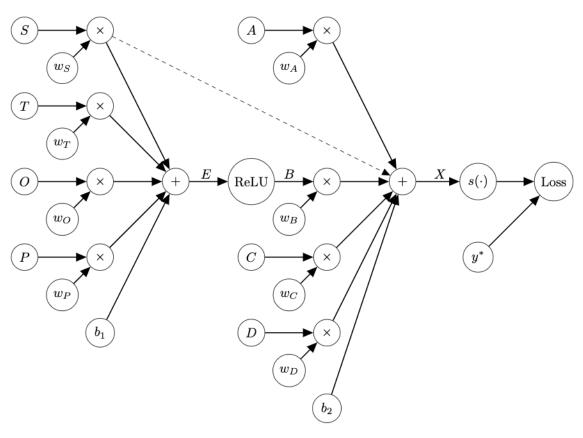
(iii) One day MesutBot got allergic from eating too many cashews. The incident broke his letter S

detector, so that he no longer gets reliable S features. Now what expressions would we use to predict the label for Y? Assume all features except B, S are given. So A = a, T = t, O = o, etc.

- $\Box y, __, __ = \arg \max_{y,b,s} P(y)P(a|y)P(b|y)P(c|y)P(d|y)P(s|b)P(t|b)P(o|b)P(p|b)$
- $\square y, __ = \arg\max_{u,s} P(y)P(a|y)P(b|y)P(c|y)P(d|y)P(s|b)P(t|b)P(o|b)P(p|b)$
- $\square \ y, __ = \arg \max_{y,b} P(y) P(a|y) P(b|y) P(c|y) P(d|y) P(t|b) P(o|b) P(p|b)$
- $\square \ y, __ = \arg\max_{y,b} P(y)P(a|y)P(b|y)P(c|y)P(d|y)P(s|b)P(t|b)P(o|b)P(p|b)$
- $\Box y, __ = \arg \max_{y,b} P(y|a,b,c,d)$ $\Box y = \arg \max_{y} P(y)P(a|y)P(c|y)P(d|y) \sum_{b',s'} P(b'|y)P(s'|b')P(t|b')P(o|b')P(p|b')$
- O None
- (b) You decide to try to output a probability P(Y|features) of a stop sign being in the picture instead of a discrete ± 1 prediction. We denote this probability as $P(Y|\vec{f}(x))$. Which of the following functions return a valid probability distribution for $P(Y = y | \vec{f}(x))$? Recall that $y \in \{-1, 1\}$.

 - O None

Unimpressed by the perceptron, you note that features are inputs into a neural network and the output is a label, so you modify the Bayes Net from above into a Neural Network computation graph. Recall the logistic function $s(x) = \frac{1}{1 + e^{-x}}$ has derivative $\frac{\partial s(x)}{\partial x} = s(x)[1 - s(x)]$



- (c) For this part, ignore the dashed edge when calculating the below.

 - For this part, ignore the dashed edge when calcula (i) What is $\frac{\partial Loss}{\partial w_A}$? $\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1-s(X))] \cdot A$ $\bigcirc 2(s(X) y^*) \cdot [s(X) \cdot (1-s(X))] \cdot A$ $\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1-s(X))] \cdot 2A + 1$ $\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1-s(X))] \cdot 2A$ $\bigcirc 2(s(X) y^*) \cdot [s(X) \cdot (1-s(X))] \cdot A + 1$ $\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1-s(X))] \cdot A + 1$ $\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1-s(X))] \cdot A + 1$ $\bigcirc None$

 - None

(ii) What is \(\frac{\partial Loss}{\partial m_S}\)? Keep in mind we are still ignoring the dotted edge in this subpart.

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot \left[s(X) \cdot (1 - s(X)) \right] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S$$

$$\bigcirc \quad 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \begin{pmatrix} 1 & E \geq 0 \\ 0 & E < 0 \end{pmatrix} \cdot 2S + S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \begin{pmatrix} 1 & E \geq 0 \\ 0 & E < 0 \end{pmatrix} \cdot 2S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot 2S$$

$$\bigcirc \quad 2(s(X)-y^*)\cdot [s(X)\cdot (1-s(X))]\cdot w_B\cdot \left(\begin{cases} 1 & E\geq 0\\ 0 & E<0 \end{cases}\right)\cdot S+S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot \left[s(X) \cdot (1 - s(X)) \right] \cdot w_B \cdot \left(\begin{cases} 1 & E \geq 0 \\ 0 & E < 0 \end{cases} \right) \cdot S + S$$

O None

(d) MesutBot is having trouble paying attention to the S feature because sometimes it gets zeroed out by the ReLU, so we connect it directly to the input of $s(\cdot)$ via the dotted edge. For the below, treat the dotted edge as a regular edge in the neural net.

(i) Which of the following is equivalent to $\frac{\partial Loss}{\partial w_A}$?

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot A$$

$$\bigcirc \quad 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot A$$

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot 2A + A$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot 2A$$

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot A$$

$$\bigcirc 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot A$$

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot 2A + A$$

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot 2A$$

$$\bigcirc 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot A + A$$

$$\bigcirc \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot A + A$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot A + A$$

(ii) Which of the following is equivalent to $\frac{\partial Loss}{\partial w_S}$? Keep in mind we are still treating the dotted edge as

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S$$

$$\bigcirc 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \begin{pmatrix} 1 & E \ge 0 \\ 0 & E < 0 \end{pmatrix} \cdot 2S + S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \begin{pmatrix} 1 & E \ge 0 \\ 0 & E < 0 \end{pmatrix} \cdot 2S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot 2S$$

$$\bigcirc 2(s(X) - y^*) \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S + S$$

$$\bigcirc \quad \frac{\partial Loss}{\partial s(X)} \cdot [s(X) \cdot (1 - s(X))] \cdot w_B \cdot \left(\begin{cases} 1 & E \ge 0 \\ 0 & E < 0 \end{cases} \right) \cdot S + S$$

O None