Regular Discussion 4

Q1. Propositional Logic

(a) Provide justification for whether each of the following are correct or incorrect.

(i)
$$(X \vee Y) \models Y$$

(ii)
$$\neg X \lor (Y \land Z) \models (X \implies Y)$$

(iii)
$$(X \lor Y) \land (Z \lor \neg Y) \models (X \lor Z)$$

(b) Consider the following sentence:

$$[(Food \implies Party) \lor (Drinks \implies Party)] \implies [(Food \land Drinks) \implies Party]$$
.

- (i) Determine, using enumeration, whether this sentence is valid, satisfiable (but not valid), or unsatisfiable.
- (ii) Convert the left-hand and right-hand sides of the main implication into CNF.
- (iii) What do you observe about the LHS and RHS after converting to CNF? Explain how your results prove the answer to part b.i.

Q2. Encrypted Knowledge Base

We have a propositional logic knowledge base as shown below, and we are trying to find a satisfying assignment for the variables A, B, C, D, and E. Each line corresponds to a valid propositional logic sentence:

$$\begin{array}{c}
\neg A \\
B \Rightarrow A \\
D \\
C \lor B \\
D \lor E
\end{array}$$

(a) Your buddy Albert runs his solver, and hands you the model $M = \{A = False, B = False, C = True, D = True, E = True\}$ that causes all of the knowledge base sentences to be true. We have a query sentence α specified as $(A \vee C) \Rightarrow E$. Our model M also causes α to be true. Can we say that the knowledge base entails α ? Explain briefly (in one sentence) why or why not.

- (b) Now we attempt to use theorem-proving methods to see whether our knowledge base entails a query sentence. To use these methods, it is useful to convert our knowledge base to conjunctive normal form (CNF), which satisfies:
 - The sentence is a conjunction of (one or more) clauses.
 - Each clause is a disjunction of literals.
 - Each literal is a symbol or a negated symbol.
 - (i) Which sentences in the knowledge base are not already in conjunctive normal form? Convert them to CNF.
 - (ii) Write the entire knowledge base as a single sentence in CNF.
 - (iii) Describe the steps necessary for converting $(A \wedge B) \vee (C \wedge D)$ to CNF.