1 Probability

Suppose that a patient can have a symptom (S) that can be caused by two different, independent diseases (A and B). It is known that the variation of gene G plays a big role in the manifestation of disease A. A model and some conditional probability tables for this situation are shown below. For each part, you may leave your answer as an arithmetic expression.

P(G)		
+g	0.1	
-g	0.9	

P(A G)		
+g	+a	1.0
+g	-a	0.0
-g	+a	0.1
-g	-a	0.9

P(P(B)		
+b	0.4		
-b	0.6		

P(S A,B)			
+a	+b	+s	1.0
+a	+b	-s	0.0
+a	-b	+s	0.9
+a	-b	-s	0.1
-a	+b	+s	0.8
-a	+b	-s	0.2
-a	-b	+s	0.1
-a	-b	-s	0.9

(a) Compute the following entry from the joint distribution:

$$P(+g,+a,+b,+s) =$$

(b) What is the probability that a patient has disease A?

$$P(+a) =$$

(c) What is the probability that a patient has disease A given that they have disease B?

$$P(+a|+b) =$$

The figures and table below are identical to the ones on the previous page and are repeated here for your convenience.

 $\begin{array}{c|c}
P(G) \\
+g & 0.1 \\
-g & 0.9
\end{array}$

P(A G)		
+g	+a	1.0
+g	-a	0.0
-g	+a	0.1
-g	-a	0.9

P(B)		
+b	0.4	
-b	0.6	

P(S A,B)			
+a	+b	+s	1.0
+a	+b	-s	0.0
+a	-b	+s	0.9
+a	-b	-s	0.1
-a	+b	+s	0.8
-a	+b	-s	0.2
-a	-b	+s	0.1
-a	-b	-s	0.9

(d) What is the probability that a patient has disease A given that they have symptom S and disease B?

$$P(+a|+s,+b) =$$

(e) What is the probability that a patient has the disease carrying gene variation G given that they have disease A?

$$P(+g|+a) =$$

2 Independence

- 1. Suppose you have two random variables, C and N. C is the result of flipping a biased coin that lands on heads (h) with probability 0.8 and tails (t) with probability 0.2. N is the number of heads that result from two independent coin flips of a fair coin.
 - (a) Fill in the probability tables for P(C), P(N), and P(C, N).

C	P(C)
h	
t	

N	P(N)
0	
1	
2	

C	N	P(C,N)
h	0	
h	1	
h	2	
t	0	
t	1	
t	2	

- (b) Using the probability tables above, what is P(N = 1|C = t)?
- 2. Simplify each of the following into a single probability expression using the given independence assumption.
 - (a) Given that $A \perp \!\!\! \perp B$, simplify $\sum_a P(a|B)P(C|a)$.
 - (b) Given that $B \perp \!\!\! \perp C|A$, simplify $\frac{P(A)P(B|A)P(C|A)}{P(B|C)P(C)}$.
 - (c) Given that $A \perp\!\!\!\perp B|C$, simplify $\frac{P(C,A|B)P(B)}{P(C)}$.
- 3. Mark all expressions that are equal to P(R, S, T), given no independence assumptions:

 \square $P(T, S \mid R) P(R)$

 \square $P(T \mid R, S) P(R, S)$

 \square $P(R \mid S) P(S \mid T) P(T)$

- ☐ None of the above