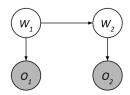
Regular Discussion 8 Solutions

1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.



W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

$$P(W_1, O_1 = a) = P(W_1)P(O_1 = a|W_1)$$

 $P(W_1 = 0, O_1 = a) = (0.3)(0.9) = 0.27$
 $P(W_1 = 1, O_1 = a) = (0.7)(0.5) = 0.35$

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

$$\begin{array}{l} P(W_2,O_1=a) = \sum_{w_1} P(w_1,O_1=a) P(W_2|w_1) \\ P(W_2=0,O_1=a) = (0.27)(0.4) + (0.35)(0.8) = 0.388 \\ P(W_2=1,O_1=a) = (0.27)(0.6) + (0.35)(0.2) = 0.232 \end{array}$$

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

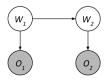
$$\begin{split} &P(W_2, O_1 = a, O_2 = b) = P(W_2, O_1 = a)P(O_2 = b|W_2) \\ &P(W_2 = 0, O_1 = a, O_2 = b) = (0.388)(0.1) = 0.0388 \\ &P(W_2 = 1, O_1 = a, O_2 = b) = (0.232)(0.5) = 0.116 \end{split}$$

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

```
Renormalizing the distribution above, we have P(W_2 = 0 | O_1 = a, O_2 = b) = 0.0388/(0.0388 + 0.116) \approx 0.25 P(W_2 = 1 | O_1 = a, O_2 = b) = 0.116/(0.0388 + 0.116) \approx 0.75
```

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=a,O_2=b)$. Here's the HMM again. O_1 and O_2 are supposed to be shaded.



		V
W_1	$P(W_1)$	
0	0.3	
1	0.7	
		1

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	a	0.9
0	b	0.1
1	a	0.5
1	b	0.5

We start with two particles representing our distribution for W_1 .

 $P_1:W_1=0$

 $P_2: W_1 = 1$

Use the following random numbers to run particle filtering:

$$[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]$$

(a) Observe: Compute the weight of the two particles after evidence $O_1 = a$.

$$w(P_1) = P(O_t = a|W_t = 0) = 0.9$$

 $w(P_2) = P(O_t = a|W_t = 1) = 0.5$

(b) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

We now sample from the weighted distribution we found above. Using the first two random samples, we find:

 $P_1 = sample(weights, 0.22) = 0$

 $P_2 = sample(weights, 0.05) = 0$

(c) Predict: Sample P_1 and P_2 from applying the time update.

$$P_1 = sample(P(W_{t+1}|W_t = 0), 0.33) = 0$$

 $P_2 = sample(P(W_{t+1}|W_t = 0), 0.20) = 0$

(d) Update: Compute the weight of the two particles after evidence $O_2 = b$.

$$w(P_1) = P(O_t = b|W_t = 0) = 0.1$$

 $w(P_2) = P(O_t = b|W_t = 0) = 0.1$

(e) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

Because both of our particles have X=0, resampling will still leave us with two particles with X=0.

$$P_1 = 0$$

$$P_2 = 0$$

(f) What is our estimated distribution for $P(W_2|O_1=a,O_2=b)$?

$$P(W_2 = 0|O_1 = a, O_2 = b) = 2/2 = 1$$

 $P(W_2 = 1|O_1 = a, O_2 = b) = 0/2 = 0$