Regular Discussion 8

1 HMMs

Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded.

(w.)	$-(w_{2})$			W_t	W_{t+1}	$P(W_{t+1} W_t)$	W_t	O_t	$P(O_t W_t)$
		W_1	$P(W_1)$	0	0	0.4	0	a	0.9
		0	0.3	0	1	0.6	0	b	0.1
		1	0.7	1	0	0.8	1	a	0.5
O_1	$\left(O_{2} \right)$			1	1	0.2	1	b	0.5

Suppose that we observe $O_1 = a$ and $O_2 = b$. Using the forward algorithm, compute the probability distribution $P(W_2|O_1 = a, O_2 = b)$ one step at a time.

(a) Compute $P(W_1, O_1 = a)$.

(b) Using the previous calculation, compute $P(W_2, O_1 = a)$.

(c) Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$.

(d) Finally, compute $P(W_2|O_1 = a, O_2 = b)$.

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1 = a, O_2 = b)$. Here's the HMM again. O_1 and O_2 are supposed to be shaded.

$(W_1) \rightarrow (W_2)$			W_t	W_{t+1}	$P(W_{t+1} W_t)$	[W_t	O_t	$P(O_t W_t)$
	W_1	$P(W_1)$	0	0	0.4	Ì	0	a	0.9
	0	0.3	0	1	0.6		0	b	0.1
	1	0.7	1	0	0.8		1	a	0.5
(O_1) (O_2)			1	1	0.2		1	b	0.5

We start with two particles representing our distribution for W_1 . $P_1: W_1 = 0$ $P_2: W_1 = 1$ Use the following random numbers to run particle filtering:

[0.22, 0.05, 0.33, 0.20, 0.84, 0.54, 0.79, 0.66, 0.14, 0.96]

(a) **Observe**: Compute the weight of the two particles after evidence $O_1 = a$.

(b) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

(c) **Predict**: Sample P_1 and P_2 from applying the time update.

(d) Update: Compute the weight of the two particles after evidence $O_2 = b$.

(e) Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

(f) What is our estimated distribution for $P(W_2|O_1 = a, O_2 = b)$?