CS 188
 Spring 2024
 Regular Discussion 12

1 CalDining Bandits

You're an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you take action a to use your meal swipe at Crossroads $(a=X)$, Cafe $3(a=C)$, or Golden Bear Cafe $(a=G)$ (the other dining halls are too inconvenient). Let a_{i} be the action you take on day i.
Suppose that the reward you get from croads (X) is uniformly distributed between -10 and 50 , the reward you get from Cafe $3(C)$ is uniformly distributed between 0 and 30 , and the reward you get from GBC (G) is always 15.
(a) What is the optimal value V^{*} ? Which dining hall has the best expected reward?
(b) What is the optimality gap Δ_{C} for the action of going to Cafe $3(C)$?
(c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action C. What is the timestep regret under this policy?
(d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day. What is the regret l_{t} for one action under this policy?
(e) Suppose you follow the random policy from the previous part for 5 days, taking actions X, C, C, G, X and getting rewards $10,20,22,18,-10$. What is the total regret for this policy? (Hint: Trick question?)
(f) True or False: Using the UCB1 algorithm for this problem would lead to logarithmic total regret, after enough days.

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^{*} (0 or 1). There are two weight parameters w_{1} and w_{2}, and non-linearity functions g_{1} and g_{2} (to be defined later, below). The network will output a value a_{2} between 0 and 1, representing the probability of being in class 1 . We will be using a loss function Loss (to be defined later, below), to compare the prediction a_{2} with the true class y^{*}.

1. Perform the forward pass on this network, writing the output values for each node z_{1}, a_{1}, z_{2} and a_{2} in terms of the node's input values:
2. Compute the loss $\operatorname{Loss}\left(a_{2}, y^{*}\right)$ in terms of the input x, weights w_{i}, and activation functions g_{i} :
3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial L o s s}{\partial w_{2}}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)
4. Suppose the loss function is quadratic, $\operatorname{Loss}\left(a_{2}, y^{*}\right)=\frac{1}{2}\left(a_{2}-y^{*}\right)^{2}$, and g_{1} and g_{2} are both sigmoid functions $g(z)=\frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, cross-entropy, for classification problems, but we'll use this to make the math easier).
Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z}=g(z)(1-g(z))$ for the sigmoid function, write $\frac{\partial \text { Loss }}{\partial w_{2}}$ in terms of the values from the forward pass, y^{*}, a_{1}, and a_{2} :
5. Now use the chain rule to derive $\frac{\partial L o s s}{\partial w_{1}}$ as a product of partial derivatives at each node used in the chain rule:
6. Finally, write $\frac{\partial L o s s}{\partial w_{1}}$ in terms of $x, y^{*}, w_{i}, a_{i}, z_{i}$:
7. What is the gradient descent update for w_{1} with step-size α in terms of the values computed above?
