
CS 188
Spring 2024 Regular Discussion 12

1 CalDining Bandits
You’re an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you
take action a to use your meal swipe at Crossroads (a = X), Cafe 3 (a = C), or Golden Bear Cafe (a = G) (the
other dining halls are too inconvenient). Let ai be the action you take on day i.

Suppose that the reward you get from croads (X) is uniformly distributed between −10 and 50, the reward you
get from Cafe 3 (C) is uniformly distributed between 0 and 30, and the reward you get from GBC (G) is always
15.

(a) What is the optimal value V ∗? Which dining hall has the best expected reward?

(b) What is the optimality gap ∆C for the action of going to Cafe 3 (C)?

(c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action C.
What is the timestep regret under this policy?

(d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day.
What is the regret lt for one action under this policy?

(e) Suppose you follow the random policy from the previous part for 5 days, taking actions X,C,C,G,X and
getting rewards 10, 20, 22, 18,−10. What is the total regret for this policy? (Hint: Trick question?)

(f) True or False: Using the UCB1 algorithm for this problem would lead to logarithmic total regret, after
enough days.

1



2 Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a
single real-valued input feature with an associated class y∗ (0 or 1). There are two weight parameters w1 and
w2, and non-linearity functions g1 and g2 (to be defined later, below). The network will output a value a2
between 0 and 1, representing the probability of being in class 1. We will be using a loss function Loss (to be
defined later, below), to compare the prediction a2 with the true class y∗.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in
terms of the node’s input values:

2. Compute the loss Loss(a2, y
∗) in terms of the input x, weights wi, and activation functions gi:

3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive ∂Loss
∂w2

.
Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be
helpful; you may use any of those variables.)

2



4. Suppose the loss function is quadratic, Loss(a2, y
∗) = 1

2 (a2−y∗)2, and g1 and g2 are both sigmoid functions
g(z) = 1

1+e−z (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that ∂g(z)
∂z = g(z)(1− g(z)) for the sigmoid function, write

∂Loss
∂w2

in terms of the values from the forward pass, y∗, a1, and a2:

5. Now use the chain rule to derive ∂Loss
∂w1

as a product of partial derivatives at each node used in the chain
rule:

6. Finally, write ∂Loss
∂w1

in terms of x, y∗, wi, ai, zi:

7. What is the gradient descent update for w1 with step-size α in terms of the values computed above?

3


