CS 188 Spring 2024

Regular Discussion 12

1 CalDining Bandits

You're an excited new student who wants to know where to eat lunch at Berkeley! Every day at lunchtime, you take action a to use your meal swipe at Crossroads (a = X), Cafe 3 (a = C), or Golden Bear Cafe (a = G) (the other dining halls are too inconvenient). Let a_i be the action you take on day i.

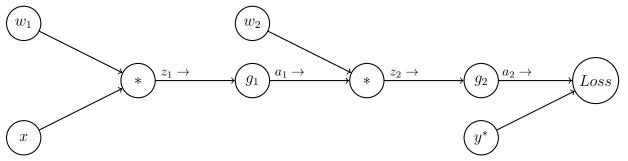
Suppose that the reward you get from croads (X) is uniformly distributed between -10 and 50, the reward you get from Cafe 3 (C) is uniformly distributed between 0 and 30, and the reward you get from GBC (G) is always 15.

(a) What is the optimal value V^* ? Which dining hall has the best expected reward?

- (b) What is the optimality gap Δ_C for the action of going to Cafe 3 (C)?
- (c) Suppose Cafe 3 just happens to be right next to your dorm, so your policy is to always choose action C. What is the timestep regret under this policy?
- (d) Now suppose you are indecisive, so your policy is to randomly choose a dining hall to go to each day. What is the **regret** l_t for one action under this policy?
- (e) Suppose you follow the random policy from the previous part for 5 days, taking actions X, C, C, G, X and getting rewards 10, 20, 22, 18, -10. What is the **total regret** for this policy? (Hint: Trick question?)
- (f) True or False: Using the UCB1 algorithm for this problem would lead to logarithmic total regret, after enough days.

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class y^* (0 or 1). There are two weight parameters w_1 and w_2 , and non-linearity functions g_1 and g_2 (to be defined later, below). The network will output a value a_2 between 0 and 1, representing the probability of being in class 1. We will be using a loss function *Loss* (to be defined later, below), to compare the prediction a_2 with the true class y^* .



1. Perform the forward pass on this network, writing the output values for each node z_1, a_1, z_2 and a_2 in terms of the node's input values:

- 2. Compute the loss $Loss(a_2, y^*)$ in terms of the input x, weights w_i , and activation functions g_i :
- 3. Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial Loss}{\partial w_2}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)

4. Suppose the loss function is quadratic, $Loss(a_2, y^*) = \frac{1}{2}(a_2 - y^*)^2$, and g_1 and g_2 are both sigmoid functions $g(z) = \frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, *cross-entropy*, for classification problems, but we'll use this to make the math easier).

Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z} = g(z)(1 - g(z))$ for the sigmoid function, write $\frac{\partial Loss}{\partial w_2}$ in terms of the values from the forward pass, y^* , a_1 , and a_2 :

- 5. Now use the chain rule to derive $\frac{\partial Loss}{\partial w_1}$ as a product of partial derivatives at each node used in the chain rule:
- 6. Finally, write $\frac{\partial Loss}{\partial w_1}$ in terms of x, y^*, w_i, a_i, z_i :

7. What is the gradient descent update for w_1 with step-size α in terms of the values computed above?