
Announcements

§ HW1 is due Tuesday, January 30,
11:59 PM PT

§ Project 1 is due Friday, February 2,
11:59 PM PT

Pre-scan attendance QR code now!
(Password appears later)

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Examples: Manhattan distance, Euclidean distance for

pathing

10

5
11.2

Recap: Cost- vs. Heuristic-Guided Search

Uniform-Cost Search
(only costs, g)

Greedy Best-First Search
(only heuristic, h)

A* Search
(both, f=g+h)

Recap: Admissibility

Inadmissible (pessimistic) heuristics break
optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down
bad plans but never outweigh true costs

Recap: 8-Puzzle

Start State Goal StateActions

Designing a Heuristic: Knight’s moves

§ Minimum number of knight’s moves to get from S to G?
§ h1 = (Manhattan distance)/3

§ h1
’ = h1 rounded up to correct parity (even if S, G same color, odd otherwise)

§ h2 = (Euclidean distance)/ 5
§ h2

’ = h2 rounded up to correct parity

§ h3 = (maximum horizontal or vertical distance)/2
§ h3

’ = h3 rounded up to correct parity

§ h(n) = max(h1
’(n), h2

’ (n), h3
’ (n)) is admissible!

S

G

Recap: Optimality of A* Tree Search

§ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

Graph Search

§ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

§ Idea: never expand a state twice

§ How to implement:
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never been

expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B

SBCG (6+0) SBCB (5+1)SBCA (4+4)

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

State space graph Search tree Closed set
{ }S B C

SBCG (6+0) SBCB (5+1)

SAC (2+1)

SBCA (4+4)

A

Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ actual cost h* from A to G

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ cost(A to C)

§ a.k.a. “triangle inequality”: h(A) ≤ cost(A to C) + h(C)

§ Note: true cost h* necessarily satisfies triangle inequality

§ Consequences of consistency:

§ The f value along a path never decreases

h(A) ≤ cost(A to C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

A* Graph Search with Consistent Heuristic

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=1

h=0

S (0+2)

SA (1+2) SB (1+1)

State space graph Search tree Closed set
{ }S B A

SAC (2+1) SBC (3+1) SBS (2+2)

h=4
h=2

SACA (3+2)

SACB (4+1)

SACG (5+0)

C

Consistency => non-decreasing f-score

Inconsistent

S (0+2)

SA (1+4) SB (1+1)

SBC (3+1) SBS (2+2)

SBCG (6+0) SBCB (5+1)

SAC (2+1)

SBCA (4+4)

S (0+2)

SA (1+2) SB (1+1)

SAC (2+1) SBC (3+1) SBS (2+2)

SACA (3+2)

SACB (4+1)

SACG (5+0)

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=1

h=0

h=4

Consistent
h=2

Optimality of A* Graph Search

§ Sketch: consider what A* does with a
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible
§ UCS is a special case (h = 0)

§ Graph search:
§ A* optimal if heuristic is consistent
§ UCS optimal (h = 0 is consistent)

§ Consistency implies admissibility

§ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

But…

§ A* keeps the entire explored region in memory
§ => will run out of space before you get bored waiting for the answer
§ There are variants that use less memory (Section 3.5.5):

§ IDA* works like iterative deepening, except it uses an f-limit instead of a depth limit
§ On each iteration, remember the smallest f-value that exceeds the current limit, use as new limit
§ Very inefficient when f is real-valued and each node has a unique value

§ RBFS is a recursive depth-first search that uses an f-limit = the f-value of the best
alternative path available from any ancestor of the current node
§ When the limit is exceeded, the recursion unwinds but remembers the best reachable f-value on

that branch

§ SMA* uses all available memory for the queue, minimizing thrashing
§ When full, drop worst node on the queue but remember its value in the parent

☹

Search and Models

§ Search operates over
models of the world
§ The agent doesn’t

actually try all the plans
out in the real world!

§ Planning is all “in
simulation”

§ Your search is only as
good as your models…

Search Gone Wrong?

Search Gone Wrong?

Tree Search Pseudo-Code

Graph Search Pseudo-Code

Local Search

[Updated slides from: Stuart Russell and Dawn Song]
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Local search algorithms

§ In many optimization problems, path is irrelevant; the goal state is the solution
§ Then state space = set of “complete” configurations;

find configuration satisfying constraints, e.g., n-queens problem; or, find
optimal configuration, e.g., travelling salesperson problem

§ In such cases, can use iterative improvement algorithms: keep a single “current”
state, try to improve it

§ Constant space, suitable for online as well as offline search
§ More or less unavoidable if the “state” is yourself (i.e., learning)

Hill Climbing

§ Simple, general idea:
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

HeurisUc for n-queens problem

§ Goal: n queens on board with no conflicts, i.e., no queen attacking another
§ States: n queens on board, one per column
§ Actions: move a queen in its column
§ Heuristic value function: number of conflicts

Hill-climbing algorithm

function HILL-CLIMBING(problem) returns a state
current ← make-node(problem.initial-state)
loop do

neighbor ← a highest-valued successor of current
if neighbor.value ≤ current.value then

return current.state
current ← neighbor

“Like climbing Everest in thick fog with amnesia”

Global and local maxima
Random restarts

§ find global optimum
§ duh

Random sideways moves
§ Escape from shoulders
§ Loop forever on flat

local maxima😕

☺

Hill-climbing on the 8-queens problem
§ No sideways moves:

§ Succeeds w/ prob. 0.14
§ Average number of moves per trial:

§ 4 when succeeding, 3 when getting stuck
§ Expected total number of moves needed:

§ 3(1-p)/p + 4 =~ 22 moves

§ Allowing 100 sideways moves:
§ Succeeds w/ prob. 0.94
§ Average number of moves per trial:

§ 21 when succeeding, 65 when getting stuck
§ Expected total number of moves needed:

§ 65(1-p)/p + 21 =~ 25 moves

Moral: algorithms with knobs
 to twiddle are irritating

Simulated annealing

§ Resembles the annealing process used to cool metals slowly to
reach an ordered (low-energy) state

§ Basic idea:
§ Allow “bad” moves occasionally, depending on “temperature”
§ High temperature => more bad moves allowed, shake the system out of

its local minimum
§ Gradually reduce temperature according to some schedule
§ Sounds pretty flaky, doesn’t it?

Simulated annealing algorithm

function SIMULATED-ANNEALING(problem,schedule) returns a state
current ← problem.initial-state
for t = 1 to ∞ do

T ←schedule(t)
if T = 0 then return current
next ← a randomly selected successor of current
∆E ← next.value – current.value
if ∆E > 0 then current ← next

else current ← next only with probability e∆E/T

Simulated Annealing

§ Theoretical guarantee:
§ Stationary distribution (Boltzmann): P(x) a eE(x)/T

§ If T decreased slowly enough, will converge to optimal state!
§ Proof sketch

§ Consider two adjacent states x, y with E(y) > E(x) [high is good]
§ Assume x®y and y®x and outdegrees D(x) = D(y) = D
§ Let P(x), P(y) be the equilibrium occupancy probabilities at T
§ Let P(x®y) be the probability that state x transitions to state y

x y

Occupation probability as a function of T

Simulated Annealing

§ Is this convergence an interesting guarantee?

§ Sounds like magic, but reality is reality:
§ The more downhill steps you need to escape a local optimum,

the less likely you are to ever make them all in a row
§ “Slowly enough” may mean exponentially slowly
§ Random restart hillclimbing also converges to optimal state…

§ Simulated annealing and its relatives are a key
workhorse in VLSI layout and other optimal
configuration problems

Local beam search

§ Basic idea:
§ K copies of a local search algorithm, inidalized randomly
§ For each iteradon

§ Generate ALL successors from K current states
§ Choose best K of these to be the new current states

Or, K chosen randomly with
a bias towards good ones

Beam search example (K=4)

8

8

7

6

7

9

8

7

9

9

6

7

9

9

9

8

7

9

10

3

8

10

5

9

10

10

9

9

Local beam search

§ Why is this different from K local searches in parallel?
§ The searches communicate! “Come over here, the grass is greener!”

§ What other well-known algorithm does this remind you of?
§ Evoludon!

Genetic algorithms

§ Genetic algorithms use a natural selection metaphor
§ Resample K individuals at each step (selection) weighted by fitness function
§ Combine by pairwise crossover operators, plus mutation to give variety

Example: N-Queens

§ Does crossover make sense here?
§ What would mutation be?
§ What would a good fitness function be?

Local search in continuous spaces

Example: Placing airports in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Place 3 airports to minimize the sum of squared distances from each city to its nearest airport

Airport loca[ons
 x = (x1,y1), (x2,y2), (x3,y3)

City loca[ons (xc,yc)

Ca = ci[es closest to airport a

Objec[ve: minimize
 f(x) = Sa ScÎCa (xa - xc)

2 + (ya - yc)2

Handling a continuous state/action space

1. Discretize it!
§ Define a grid with increment d , use any of the discrete algorithms

2. Choose random perturbations to the state
a. First-choice hill-climbing: keep trying until something improves the state
b. Simulated annealing

3. Compute gradient of f(x) analytically

Finding extrema in continuous space

§ Gradient vector Ñf(x) = (¶f/¶x1, ¶f/¶y1, ¶f/¶x2, …)T

§ For the airports, f(x) = Sa ScÎCa (xa - xc)2 + (ya - yc)2

§ ¶f/¶x1 =ScÎC1 2(x1 - xc)
§ At an extremum, Ñf(x) = 0
§ Can sometimes solve in closed form: x1 = (ScÎC1 xc)/|C1|

§ Is this a local or global minimum of f?

§ If we can’t solve Ñf(x) = 0 in closed form…
§ Gradient descent: x ¬ x - aÑf(x)

§ Huge range of algorithms for finding extrema using gradients

§ Many configuration and optimization problems can be
formulated as local search

§ General families of algorithms:
§ Hill-climbing, continuous optimization
§ Simulated annealing (and other stochastic methods)
§ Local beam search: multiple interaction searches
§ Genetic algorithms: break and recombine states

Many machine learning algorithms are local searches

Summary

