# CS 188: Artificial Intelligence

#### Propositional Logic II (cont.) + First order Logic

Any questions about previous logic lectures?



Slides mostly from Stuart Russell University of California, Berkeley

#### Pacman's knowledge base: Transition model

How does each *state variable* at each time gets its value?

Here we care about location variables, e.g., At\_3,3\_17

A state variable X gets its value according to a *successor-state axiom* 

X\_t ⇔ [X\_t-1 ∧ ¬(some action\_t-1 made it false)] v

 $[\neg X_t-1 \land (\text{some action}_t-1 \text{ made it true})]$ 

For Pacman location:

At\_3,3\_17 ⇔ [At\_3,3\_16 ∧ ¬((¬Wall\_3,4 ∧ N\_16) ∨ (¬Wall\_4,3 ∧ E\_16) ∨ ...)]

v [
$$\neg$$
At\_3,3\_16  $\land$  ((At\_3,2\_16  $\land \neg$ Wall\_3,3  $\land$  N\_16) v

(At\_2,3\_16 ∧ ¬Wall\_3,3 ∧ E\_16) v ...)]

Food\_3,3\_17 ⇔ **??** 

Lec 7, Slide 20

# Reminder: Partially observable Pacman

- Basic question: where am I?
- Variables:
  - Wall\_0,0, Wall\_0,1, ...
  - Blocked\_W\_0, Blocked\_N\_0, ..., Blocked\_W\_1, ...
  - W\_0, N\_0, ..., W\_1, ...
  - At\_0,0\_0 , At\_0,1\_0, ..., At\_0,0\_1 , ...
- Sensor model:
  - Blocked\_W\_0 ⇔ ((At\_1,1\_0 ∧ Wall\_0,1) v (At\_1,2\_0 ∧ Wall\_0,2) v (At\_1,3\_0 ∧ Wall\_0,3) v ....)
- Map: where are the walls
- Initial state: Pacman definitely somewhere
- Domain constraints: e.g. only one action per timestep
- Transition model: how state variables change (or don't)



- Percept
- Action
- Percept
- Action
- Percept
- Action
- Percept



- Percept
- Action WEST
- Percept
- Action
- Percept
- Action
- Percept



- Percept
- Action WEST
- Percept
- Action
- Percept
- Action
- Percept



- Percept
- Action WEST

- Percept
- Action WEST
- Percept
- Action
- Percept



- Percept
- Action WEST

- Percept
- Action WEST
- Percept
- Action
- Percept





Percept







# Example: Mapping from a known relative location

- Without loss of generality, call the initial location 0,0
- The percept tells Pacman which actions work, so he always knows where he is
  - "Dead reckoning"
- Initialize the KB with PacPhysics for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
  - At each time step
    - Update the KB with previous action and new percept facts
    - For each wall variable Wall\_x,y
      - If Wall\_x,y is entailed, add to KB
      - If ¬Wall\_x,y is entailed, add to KB
    - Choose an action
- The wall variables constitute the map

## Mapping demo

- Percept
- Action NORTH
- Percept
- Action EAST
- Percept
- Action SOUTH
- Percept



# Example: Simultaneous localization and mapping

- Often, dead reckoning won't work in the real world
  - E.g., sensors just count the *number* of adjacent walls (0,1,2,3 = 2 bits)
- Pacman doesn't know which actions work, so he's "lost"
  - So if he doesn't know where he is, how does he build a map???
- Initialize the KB with PacPhysics for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
  - At each time step
    - Update the KB with previous action and new percept facts
    - For each x,y, add either Wall\_x,y or ¬Wall\_x,y to KB, if entailed
    - For each x,y, add either At\_x,y\_t or ¬At\_x,y\_t to KB, if entailed
    - Choose an action



clauses

- Conjunction of symbols 

   disjunction of symbols
- $A \lor B \lor \neg C \lor \neg D$  =  $C \land D \Longrightarrow A \lor B$
- The resolution inference rule takes two such clauses and infers a new one by resolving complementary symbols:
- Example:  $A \land B \land C \implies U \lor V$

 $\mathsf{D} \land \mathsf{E} \land \mathsf{U} \Rightarrow \mathsf{X} \lor \mathsf{Y}$ 

 $\mathsf{A} \land \mathsf{B} \land \mathsf{C} \land \mathsf{D} \land \mathsf{E} \implies \mathsf{V} \lor \mathsf{X} \lor \mathsf{Y}$ 

- Sentence unsatistfiable iff repeated resolution produces ()  $\Rightarrow$  ()
- Resolution is complete for propositional logic, but exp-time

## Summary

- Logical inference computes entailment relations among sentences
- Theorem provers apply inference rules to sentences
  - Forward chaining applies modus ponens with definite clauses; linear time
  - Resolution is complete for PL but exponential time in the worst case
- SAT solvers based on DPLL provide incredibly efficient inference
- Logical agents can do localization, mapping, SLAM, planning (and many other things) just using one generic inference algorithm on one knowledge base

## CS 188: Artificial Intelligence

First-Order Logic



Slides mostly from Stuart Russell University of California, Berkeley

### Spectrum of representations





(b) Factored

(a) Atomic

Search, game-playing

Planning, propositional logic, Bayes nets



#### (b) Structured

First-order logic, databases, logic programs, probabilistic programs

#### **Expressive** power

- Rules of chess:
  - 100,000 pages in propositional logic
  - 1 page in first-order logic
- Rules of Pacman:
  - ∀t Alive(t) ⇔

[Alive(t-1)  $\land \neg \exists$  g,x,y [Ghost(g)  $\land$  At(Pacman,x,y,t-1)  $\land$  At(g,x,y,t-1)]]

- A possible world of five objects:
  - # "left leg" unary function (arity is # arguments)
    - "on head" binary relation
  - "brother" binary relation
  - "person" unary relation
  - 🕅 "king" unary relation
  - "crown" unary relation
  - "John" constant (0-ary function)
  - "Richard" constant (0-ary function)
- If a function/relation/constant is mentioned
- World must have object(s) plus definitions of those functions/relations/constants



- A possible world for FOL consists of:
  - A non-empty set of objects
  - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
  - For each k-ary function in the language, a mapping from k-tuples of objects to objects
  - For each constant symbol, a particular object (can think of constants as 0-ary functions)



- A possible world for FOL consists of:
  - A non-empty set of objects
  - For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
  - For each k-ary function in the language, a mapping from k-tuples of objects to objects
  - For each constant symbol, a particular object (can think of constants as 0-ary functions)



#### • A possible world for FOL consists of:

- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)

#### How many possible worlds?



## Syntax and semantics: Terms

- A term is something that refers to an object; it can be
  - A constant symbol, e.g., A , B, EvilKingJohn
    - The possible world fixes these referents
  - A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
    - The possible world specifies the value of the function, given the referents of the terms
      - BFF(EvilKingJohn) -> BFF(2) -> 3
  - A logical variable, e.g., x
    - (more later)



## Syntax and semantics: Atomic sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
  - A predicate symbol with terms as arguments, e.g., Knows(A, BFF(B))
    - Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F
    - True iff the objects referred to by the terms are in the relation referred to by the predicate
  - An equality between terms, e.g., BFF(BFF(BFF(B)))=B
    - True iff the terms refer to the same objects
    - BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2 -> BFF(1)=2 -> 2=2 -> T



## Syntax and semantics: Complex sentences

- Sentences with logical connectives  $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
  - Vx Knows(x, BFF(x))
    - True in world w iff true in *all extensions* of w where x refers to an object in w
      - x -> 1: Knows(1, BFF(1)) -> Knows(1,2) -> T
      - x -> 2: Knows(2, BFF(2)) -> Knows(2,3) -> T
      - x -> 3: Knows(3, BFF(3)) -> Knows(3,1) -> F



## Syntax and semantics: Complex sentences

- Sentences with logical connectives  $\neg \alpha, \alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
  - ∃x Knows(x,BFF(x))
    - True in world w iff true in *some extension* of w where x refers to an object in w
      - x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
      - x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
      - x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F



#### Fun with sentences

- Everyone knows President Obama
  - Image: ∀n Person(n) ⇒ Knows(n,Obama)
- There is someone that nobody else knows
  - $\exists s \operatorname{Person}(s) \land \forall n (\operatorname{Person}(n) \land \neg(n = s)) \Rightarrow \neg \operatorname{Knows}(n,s)$
- Everyone knows someone
  - $\forall x \operatorname{Person}(x) \Rightarrow \exists y \operatorname{Person}(y) \land \operatorname{Knows}(x,y)$
  - $\forall x (Person(x) \Rightarrow \exists y (Person(y) \land Knows(x,y)))$

## More fun with sentences

- Any two people of the same nationality speak a common language
  - Nationality(x,n) x has nationality n
  - Speaks(x,I) x speaks language I
  - ∀x,y [(∃ n Nationality(x,n) ∧ Nationality(y,n)) ⇒
     (∃ | Speaks(x,l) ∧ Speaks(y,l))]
  - $\forall t (Alive(t) \Leftrightarrow [Alive(t-1) \land \neg \exists g,x,y [Ghost(g) \land At(Pacman,x,y,t-1) \land At(g,x,y,t-1)])$

## Conciseness of first order logic

- Pacman can't be in two places at once
  - FOL:  $\forall x_1, y_1, x_2, y_2, t (At(x_1, y_1, t) \land At(x_2, y_2, t)) \Rightarrow (x_1 = x_2 \land y_1 = y_2)$
  - PL: ¬ (At\_1,1\_0 ∧ At\_1,2\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_1,3\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_2,1\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_2,2\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_2,3\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_3,1\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_3,2\_0) ∧ ¬ (At\_1,1\_0 ∧ At\_3,3\_0) ∧ ...
  - And that's just if he's in the bottom left at the first timestep

## Inference in FOL

- Entailment is defined exactly as for propositional logic:
  - $\alpha \models \beta$  (" $\alpha$  entails  $\beta$ ") iff in every world where  $\alpha$  is true,  $\beta$  is also true
  - E.g., ∀x Knows(x,Obama) entails ∃y∀x Knows(x,y)
- In FOL, we can go beyond just answering "yes" or "no"; given an existentially quantified query, return a *substitution* (or *binding*) for the variable(s) such that the resulting sentence is entailed:
  - KB = ∀x Knows(x,Obama)
  - Query = ∃y∀x Knows(x,y)
  - Answer = Yes,  $\sigma = \{y/Obama\}$
  - Notation:  $\alpha \sigma$  means applying substitution  $\sigma$  to sentence  $\alpha$ 
    - E.g., if  $\alpha = \forall x \text{ Knows}(x,y)$  and  $\sigma = \{y/\text{Obama}\}$ , then  $\alpha \sigma = \forall x \text{ Knows}(x,\text{Obama})$

# Inference in FOL: Propositionalization

- Convert (KB  $\wedge \neg \alpha$ ) to PL, use a PL SAT solver to check (un)satisfiability
  - Trick: replace variables with ground terms, convert atomic sentences to symbols
    - ∃x Knows(x,Obama)
      - Knows(X<sub>1</sub>,Obama)
      - Knows\_X1\_Obama
    - Vx Knows(x,Obama) and Democrat(Feinstein)
      - Knows(Obama, Obama) and Knows(Feinstein, Obama) and Democrat(Feinstein)
    - ∀x Knows(Mother(x),x)
      - Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Mother(Obama)) ......
  - Real trick: for k = 1 to infinity:
    - Get a set of terms: constants, functions of constants, funcs of funcs of constants, ... up to depth k
    - Propositionalize as if those are all the terms that exist
    - If a contradiction is found, halt; otherwise, continue
  - If FOL sentence is unsatisfiable, will find a contradiction for some finite k (Herbrand); if not, may continue for ever; *semidecidable*

## Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
  - KB = Person(Socrates), ∀x Person(x) ⇒ Mortal(x)
  - conclude Mortal(Socrates)
  - The general rule is a version of Modus Ponens:
    - Given  $\alpha \Rightarrow \beta$  and  $\alpha'$ , where  $\alpha \sigma = \alpha' \sigma$  for some substitution  $\sigma$ , conclude  $\beta \sigma$ 
      - σ is {x/Socrates}
    - Given ∀x Knows(x,Obama) and ∀y, z Knows(y,z) ⇒ Likes(y,z)
      - σ is {y/x, z/Obama}, conclude Likes(x,Obama)
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers

## Summary, pointers

- FOL is a very expressive formal language
- Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 10)
  - circuits, software, planning, law, taxes, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.
- Inference is semidecidable in general; many problems are efficiently solvable in practice
- Inference technology for logic programming is especially efficient (see AIMA Ch. 9)