CS 188: Artificial Intelligence

Propositional Logic II (cont.) + First order Logic

Any questions about previous logic lectures?

Slides mostly from Stuart Russell University of California, Berkeley

Pacman's knowledge base: Transition model

How does each state variable at each time gets its value?

- Here we care about location variables, e.g., At_3,3_17

A state variable X gets its value according to a successor-state axiom

- $\mathrm{X} _\mathrm{t} \Leftrightarrow\left[\mathrm{X} _\mathrm{t}-1 \wedge \neg(\right.$ some action_t-1 made it false) $] \mathrm{v}$

$$
\left[\neg \mathrm{X} _\mathrm{t}-1 \wedge(\text { some action_t-1 made it true })\right]
$$

For Pacman location:

- At_3,3_17 $\Leftrightarrow[$ At_3,3_16 $\wedge \neg((\neg$ Wall_3,4 \wedge N_16) $v(\neg$ Wall_4,3 ^E_16) v ...)]
v [\neg At_3,3_16 $\wedge\left(\left(\right.\right.$ At_3,2_16 $\wedge \neg$ Wall_3,3 $\left.\wedge N _16\right) v$ (At_2,3_16 $\wedge \neg$ Wall_3,3 $\left.\left.\left.\wedge E _16\right) \vee . ..\right)\right]$
Food_3,3_17 \Leftrightarrow ??

Reminder: Partially observable Pacman

- Basic question: where am I?
- Variables:
- Wall_0,0, Wall_0,1, ...
- Blocked_W_0, Blocked_N_0, ..., Blocked_W_1, ...
- W_0, N_0, ..., W_1, ...
- At_0,0_0, At_0,1_0, ..., At_0,0_1, ...
- Sensor model:
- Blocked_W_0 $\begin{aligned} & ((\text { At_1,1_0 } \wedge \text { Wall_0,1) } \vee \\ & (\text { At_1,2_0 } \wedge \text { Wall_0,2) } \vee \\ & (\text { At_1,3_0 } \wedge \text { Wall_0,3) } \vee \ldots . .)\end{aligned}$
- Map: where are the walls
- Initial state: Pacman definitely somewhere
- Domain constraints: e.g. only one action per timestep
- Transition model: how state variables change (or don't)

Localization demo

- Percept
- Action
- Percept
- Action
- Percept
- Action
- Percept

Localization demo

- Percept -
- Action WEST
- Percept
- Action
- Percept
- Action
- Percept

Localization demo

- Percept ■
- Action WEST
- Percept -
- Action
- Percept
- Action
- Percept

Localization demo

- Percept —
- Action WEST
- Percept -
- Action WEST
- Percept
- Action
- Percept

Localization demo

- Percept
- Action WEST
- Percept -
- Action WEST
- Percept -
- Action
- Percept

Localization demo

- Percept —
- Action WEST
- Percept -
- Action WEST
- Percept
- Action WEST
- Percept

Localization demo

- Percept
- Action WEST
- Percept -
- Action WEST
- Percept -
- Action WEST
- Percept

Example: Mapping from a known relative location

- Without loss of generality, call the initial location 0,0
- The percept tells Pacman which actions work, so he always knows where he is
- "Dead reckoning"
- Initialize the KB with PacPhysics for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
- At each time step
- Update the KB with previous action and new percept facts
- For each wall variable Wall_x,y
- If Wall_ x, y is entailed, add to KB
- If \neg Wall_ x, y is entailed, add to KB
- Choose an action
- The wall variables constitute the map

Mapping demo

- Percept L
- Action NORTH
- Percept Г
- Action EAST
- Percept \square
- Action SOUTH
- Percept - ل

Example: Simultaneous localization and mapping

- Often, dead reckoning won't work in the real world
- E.g., sensors just count the number of adjacent walls ($0,1,2,3=2$ bits)
- Pacman doesn't know which actions work, so he's "lost"
- So if he doesn't know where he is, how does he build a map???
- Initialize the KB with PacPhysics for T time steps, starting at 0,0
- Run the Pacman agent for T time steps
- At each time step
- Update the KB with previous action and new percept facts
- For each x, y, add either Wall_x,y or \neg Wall_x,y to KB, if entailed
- For each x, y, add either At_ $x, y _t$ or $\neg A t _x, y_{-} t$ to $K B$, if entailed
- Choose an action

Resolution (briefly)

Reminder of conjunctive normal form: $(A \vee B) \wedge(A \vee \neg C \vee D) \wedge(C \vee \neg B) \wedge(B)$

- Every CNF clause can be written as
- Conjunction of symbols \Rightarrow disjunction of symbols
- $A \vee B \vee \neg C \vee \neg D \quad=\quad C \wedge D \Rightarrow A \vee B$
- The resolution inference rule takes two such clauses and infers a new one by resolving complementary symbols:
- Example: $A \wedge B \wedge C \Rightarrow \mathbf{U} \vee V$

$$
\frac{D \wedge E \wedge U \Rightarrow X \vee Y}{A \wedge B \wedge C \wedge D \wedge E \Rightarrow V \vee X \vee Y}
$$

- Sentence unsatistfiable iff repeated resolution produces () \Rightarrow ()
- Resolution is complete for propositional logic, but exp-time

Summary

- Logical inference computes entailment relations among sentences
- Theorem provers apply inference rules to sentences
- Forward chaining applies modus ponens with definite clauses; linear time
- Resolution is complete for PL but exponential time in the worst case
- SAT solvers based on DPLL provide incredibly efficient inference
- Logical agents can do localization, mapping, SLAM, planning (and many other things) just using one generic inference algorithm on one knowledge base

CS 188: Artificial Intelligence

First-Order Logic

Slides mostly from Stuart Russell
University of California, Berkeley

Spectrum of representations

Expressive power

- Rules of chess:
- 100,000 pages in propositional logic
- 1 page in first-order logic
- Rules of Pacman:
- $\forall \mathrm{t}$ Alive(t$) \Leftrightarrow$
[Alive(t-1) $\wedge \neg \exists \mathrm{g}, \mathrm{x}, \mathrm{y}$ [Ghost(g) \wedge At (Pacman, $\mathrm{x}, \mathrm{y}, \mathrm{t}-1) \wedge \operatorname{At}(\mathrm{g}, \mathrm{x}, \mathrm{y}, \mathrm{t}-1)]$]

Possible worlds

- A possible world of five objects:
"left leg" unary function (arity is \# arguments)

- If a function/relation/constant is mentioned
- World must have object(s) plus definitions of those functions/relations/constants

Possible worlds

- A possible world for FOL consists of:
- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)

Possible worlds

- A possible world for FOL consists of:
- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)

Possible worlds

- A possible world for FOL consists of:
- A non-empty set of objects
- For each k-ary predicate in the language, a set of k-tuples of objects (i.e., the set of tuples of objects that satisfy the predicate in this world)
- For each k-ary function in the language, a mapping from k-tuples of objects to objects
- For each constant symbol, a particular object (can think of constants as 0-ary functions)

How many possible worlds?

Syntax and semantics: Terms

- A term is something that refers to an object; it can be
- A constant symbol, e.g., A , B, EvilKingJohn
- The possible world fixes these referents
- A function symbol with terms as arguments, e.g., BFF(EvilKingJohn)
- The possible world specifies the value of the function, given the referents of the terms
- BFF(EvilKingJohn) -> BFF(2) -> 3

- A logical variable, e.g., x
- (more later)

Syntax and semantics: Atomic sentences

- An atomic sentence is an elementary proposition (cf symbols in PL)
- A predicate symbol with terms as arguments, e.g., Knows(A, BFF(B))
- Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F
- True iff the objects referred to by the terms are in the relation referred to by the predicate
- An equality between terms, e.g., $\operatorname{BFF}(\operatorname{BFF}(\operatorname{BFF}(B)))=B$
- True iff the terms refer to the same objects

- $\operatorname{BFF}(\operatorname{BFF}(\operatorname{BFF}(B)))=B->\operatorname{BFF}(\operatorname{BFF}(B F F(\mathbf{2})))=\mathbf{2}->\operatorname{BFF}(\operatorname{BFF}(\mathbf{3}))=\mathbf{2}$
-> $\operatorname{BFF}(\mathbf{1})=\mathbf{2}->\mathbf{2}=\mathbf{2}$-> \mathbf{T}

Syntax and semantics: Complex sentences

- Sentences with logical connectives
$\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
- $\forall x$ Knows(x, BFF(x))
- True in world w iff true in all extensions of w where x refers to an object in w
- $x->$ 1: $\operatorname{Knows}(\mathbf{1}, \operatorname{BFF}(\mathbf{1})$) $->\operatorname{Knows}(\mathbf{1}, \mathbf{2})->\mathbf{T}$
- $x->\mathbf{2}: \operatorname{Knows}(\mathbf{2}, \operatorname{BFF}(\mathbf{2}))->\operatorname{Knows}(\mathbf{2}, \mathbf{3})->\mathbf{T}$
- x-> 3: $\operatorname{Knows}(\mathbf{3}, \mathrm{BFF}(\mathbf{3}))$-> $\operatorname{Knows(3,1)~->~F}$

Syntax and semantics: Complex sentences

- Sentences with logical connectives
$\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \Rightarrow \beta, \alpha \Leftrightarrow \beta$
- Sentences with universal or existential quantifiers, e.g.,
- $\exists x$ Knows($\mathrm{x}, \mathrm{BFF}(\mathrm{x})$)
- True in world w iff true in some extension of w where x refers to an object in w
- x-> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
- $x->\mathbf{2}$: Knows(2,BFF(2)) \rightarrow Knows(2,3) $\rightarrow \mathbf{T}$

- x-> $\mathbf{3}$: Knows(3,BFF(3)) -> Knows(3,1) -> F

Fun with sentences

- Everyone knows President Obama
- $\forall \mathrm{n}$ Person(n$) \Rightarrow$ Knows(n,Obama)
- There is someone that nobody else knows
- \exists s Person $(\mathrm{s}) \wedge \forall \mathrm{n}(\operatorname{Person}(\mathrm{n}) \wedge \neg(\mathrm{n}=\mathrm{s})) \Rightarrow \neg$ Knows (n, s)
- Everyone knows someone
- $\forall x$ Person $(x) \Rightarrow \exists y$ Person $(\mathrm{y}) \wedge$ Knows (x, y)
- $\forall x(\operatorname{Person}(x) \Rightarrow \exists y(\operatorname{Person}(y) \wedge K n o w s(x, y)))$

More fun with sentences

- Any two people of the same nationality speak a common language
- Nationality (x, n) - x has nationality n
- Speaks(x,I) - x speaks language I
- $\forall \mathrm{x}, \mathrm{y}[(\exists \mathrm{n}$ Nationality $(\mathrm{x}, \mathrm{n}) \wedge$ Nationality $(\mathrm{y}, \mathrm{n})) \Rightarrow$
(\exists I Speaks $(x, I) \wedge$ Speaks $(y, I))]$
- $\forall t($ Alive $(t) \Leftrightarrow[$ Alive $(t-1) \wedge \neg \exists g, x, y[G h o s t(g) \wedge A t(P a c m a n, x, y, t-1) \wedge \operatorname{At}(g, x, y, t-1)]])$

Conciseness of first order logic

- Pacman can't be in two places at once
- FOL: $\forall x_{1}, y_{1}, x_{2}, y_{2}, t\left(\operatorname{At}\left(x_{1}, y_{1}, t\right) \wedge \operatorname{At}\left(x_{2}, y_{2}, t\right)\right) \Rightarrow\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right)$
- PL: $-\left(\right.$ At_1,1_0 \wedge At_1,2_0) $\wedge \rightarrow\left(\right.$ At_1,1_0 \wedge At_1,3_0) $\wedge \neg\left(A t _1,1 _0 \wedge\right.$ At_2,1_0) \wedge -
 $\left(A t _1,1 _0 \wedge\right.$ At_3,2_0) $\wedge \rightarrow($ At_1,1_0 \wedge At_3,3_0 $) \wedge . .$.
- And that's just if he's in the bottom left at the first timestep

Inference in FOL

- Entailment is defined exactly as for propositional logic:
- $\alpha \mid=\beta$ (" α entails β ") iff in every world where α is true, β is also true
- E.g., $\forall x$ Knows($x, O b a m a$) entails $\exists y \forall x$ Knows (x, y)
- In FOL, we can go beyond just answering "yes" or "no"; given an existentially quantified query, return a substitution (or binding) for the variable(s) such that the resulting sentence is entailed:
- KB = $\forall \mathrm{x}$ Knows(x, Ob ama)
- Query $=\exists y \forall x$ Knows(x, y)
- Answer = Yes, $\sigma=\{y / O b a m a\}$
- Notation: $\alpha \sigma$ means applying substitution σ to sentence α
- E.g., if $\alpha=\forall x$ Knows(x, y) and $\sigma=\{y / O b a m a\}$, then $\alpha \sigma=\forall x$ Knows($x, O b a m a)$

Inference in FOL: Propositionalization

- Convert $(\mathrm{KB} \wedge \neg \alpha)$ to PL, use a PL SAT solver to check (un)satisfiability
- Trick: replace variables with ground terms, convert atomic sentences to symbols
- $\exists x$ Knows(x,Obama)
- Knows(X ${ }_{1}$,Obama)
- Knows_X1_Obama
- $\forall x$ Knows(x,Obama) and Democrat(Feinstein)
- Knows(Obama,Obama) and Knows(Feinstein,Obama) and Democrat(Feinstein)
- Knows_Obama_Obama ^Knows_Feinstein_Obama ^ Democrat_Feinstein
- $\forall x$ Knows(Mother(x), x)
- Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Mother(Obama))
- Real trick: for $k=1$ to infinity:
- Get a set of terms: constants, functions of constants, funcs of funcs of constants, ... up to depth k
- Propositionalize as if those are all the terms that exist
- If a contradiction is found, halt; otherwise, continue
- If FOL sentence is unsatisfiable, will find a contradiction for some finite k (Herbrand); if not, may continue for ever; semidecidable

Inference in FOL: Lifted inference

- Apply inference rules directly to first-order sentences, e.g.,
- KB = Person(Socrates), $\forall x$ Person $(x) \Rightarrow$ Mortal (x)
- conclude Mortal(Socrates)
- The general rule is a version of Modus Ponens:
- Given $\alpha \Rightarrow \beta$ and α^{\prime}, where $\alpha \sigma=\alpha^{\prime} \sigma$ for some substitution σ, conclude $\beta \sigma$
- σ is $\{x /$ Socrates $\}$
- Given $\forall x$ Knows $(x, O b a m a)$ and $\forall y, z \operatorname{Knows}(y, z) \Rightarrow \operatorname{Likes}(y, z)$
- σ is $\{y / x, z / O b a m a\}$, conclude Likes($x, O b a m a)$
- Examples: Prolog (backward chaining), Datalog (forward chaining), production rule systems (forward chaining), resolution theorem provers

Summary, pointers

- FOL is a very expressive formal language
- Many domains of common-sense and technical knowledge can be written in FOL (see AIMA Ch. 10)
- circuits, software, planning, law, taxes, network and security protocols, product descriptions, ecommerce transactions, geographical information systems, Google Knowledge Graph, Semantic Web, etc.
- Inference is semidecidable in general; many problems are efficiently solvable in practice
- Inference technology for logic programming is especially efficient (see AIMA Ch. 9)

