
CS 188: Artificial Intelligence
Propositional Logic II (cont.) + First order Logic

Slides mostly from Stuart Russell

University of California, Berkeley

Pacman’s knowledge base: Transition model
How does each state variable at each time gets its value?

§ Here we care about location variables, e.g., At_3,3_17
A state variable X gets its value according to a successor-state axiom

§ X_t Û [X_t-1 Ù ¬(some action_t-1 made it false)] v
 [¬X_t-1 Ù (some action_t-1 made it true)]

For Pacman location:
§ At_3,3_17 Û [At_3,3_16 Ù ¬((¬Wall_3,4 Ù N_16) v (¬Wall_4,3
Ù E_16) v …)]

 v [¬At_3,3_16 Ù ((At_3,2_16 Ù ¬Wall_3,3 Ù N_16) v
 (At_2,3_16 Ù ¬Wall_3,3 Ù E_16) v …)]

Food_3,3_17 Û ??

Any questions about
previous logic lectures?

Lec 7, Slide 20

Reminder: Partially observable Pacman
§ Basic question: where am I?
§ Variables:

§ Wall_0,0, Wall_0,1, …
§ Blocked_W_0, Blocked_N_0, …, Blocked_W_1, …
§ W_0 , N_0, …, W_1, …
§ At_0,0_0 , At_0,1_0, …, At_0,0_1 , …

§ Sensor model:
§ Blocked_W_0 Û ((At_1,1_0 ÙWall_0,1) v

(At_1,2_0 ÙWall_0,2) v
(At_1,3_0 ÙWall_0,3) v ….)

§ Map: where are the walls
§ Initial state: Pacman definitely somewhere
§ Domain constraints: e.g. only one action per timestep
§ Transition model: how state variables change (or don’t)

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

WEST

Localization demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

WEST

WEST

WEST

Example: Mapping from a known relative location

§ Without loss of generality, call the initial location 0,0
§ The percept tells Pacman which actions work, so he always knows where he is

§ “Dead reckoning”

§ Initialize the KB with PacPhysics for T time steps, starting at 0,0
§ Run the Pacman agent for T time steps

§ At each time step
§ Update the KB with previous action and new percept facts
§ For each wall variable Wall_x,y

§ If Wall_x,y is entailed, add to KB
§ If ¬Wall_x,y is entailed, add to KB

§ Choose an action

§ The wall variables constitute the map

Mapping demo

§ Percept
§ Action
§ Percept
§ Action
§ Percept
§ Action
§ Percept

NORTH

EAST

SOUTH

Example: Simultaneous localization and mapping

§ Often, dead reckoning won’t work in the real world
§ E.g., sensors just count the number of adjacent walls (0,1,2,3 = 2 bits)

§ Pacman doesn’t know which actions work, so he’s “lost”
§ So if he doesn’t know where he is, how does he build a map???

§ Initialize the KB with PacPhysics for T time steps, starting at 0,0
§ Run the Pacman agent for T time steps

§ At each time step
§ Update the KB with previous action and new percept facts
§ For each x,y, add either Wall_x,y or ¬Wall_x,y to KB, if entailed
§ For each x,y, add either At_x,y_t or ¬At_x,y_t to KB, if entailed
§ Choose an action

Resolution (briefly)

§ Every CNF clause can be written as
§ Conjunction of symbols Þ disjunction of symbols
§ A Ú B Ú ¬C Ú ¬D = C Ù D Þ A Ú B

§ The resolution inference rule takes two such clauses and infers a
new one by resolving complementary symbols:

§ Example: A Ù B Ù C Þ U Ú V
D Ù E Ù U Þ X Ú Y
A Ù B Ù C Ù D Ù E Þ V Ú X Ú Y

§ Sentence unsatistfiable iff repeated resolution produces () Þ ()
§ Resolution is complete for propositional logic, but exp-time

Reminder of conjunctive normal form: (A Ú B) Ù (A Ú ¬C Ú D) Ù (C Ú ¬B) Ù (B)

clauses

Summary

§ Logical inference computes entailment relations among sentences
§ Theorem provers apply inference rules to sentences

§ Forward chaining applies modus ponens with definite clauses; linear time
§ Resolution is complete for PL but exponential time in the worst case

§ SAT solvers based on DPLL provide incredibly efficient inference
§ Logical agents can do localization, mapping, SLAM, planning (and

many other things) just using one generic inference algorithm on
one knowledge base

CS 188: Artificial Intelligence
First-Order Logic

Slides mostly from Stuart Russell

University of California, Berkeley

Spectrum of representations

B C

(a) Atomic (b) Factored (b) Structured

B C

Search,
game-playing

Planning,
propositional logic,
Bayes nets

First-order logic,
databases, logic programs,
probabilistic programs

Expressive power

§ Rules of chess:
§ 100,000 pages in propositional logic
§ 1 page in first-order logic

§ Rules of Pacman:
§ "t Alive(t) Û

[Alive(t-1) Ù ¬$ g,x,y [Ghost(g) Ù At(Pacman,x,y,t-1) Ù At(g,x,y,t-1)]]

Possible worlds
§ A possible world of five objects:

“left leg” unary function (arity is # arguments)
“on head” binary relation
“brother” binary relation
“person” unary relation
“king” unary relation
“crown” unary relation
“John” constant (0-ary function)
“Richard” constant (0-ary function)

§ If a function/relation/constant is mentioned
§ World must have object(s) plus definitions of

those functions/relations/constants

Possible worlds

§ A possible world for FOL consists of:
§ A non-empty set of objects
§ For each k-ary predicate in the language, a set of

k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world)

§ For each k-ary function in the language, a
mapping from k-tuples of objects to objects

§ For each constant symbol, a particular object
(can think of constants as 0-ary functions)

Knows(A, BFF(B))

1

2

Possible worlds

§ A possible world for FOL consists of:
§ A non-empty set of objects
§ For each k-ary predicate in the language, a set of

k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world)

§ For each k-ary function in the language, a
mapping from k-tuples of objects to objects

§ For each constant symbol, a particular object
(can think of constants as 0-ary functions)

Knows(A, BFF(B))

1

2

Possible worlds

§ A possible world for FOL consists of:
§ A non-empty set of objects
§ For each k-ary predicate in the language, a set of

k-tuples of objects (i.e., the set of tuples of
objects that satisfy the predicate in this world)

§ For each k-ary function in the language, a
mapping from k-tuples of objects to objects

§ For each constant symbol, a particular object
(can think of constants as 0-ary functions)

Knows(A, BFF(B))

How many possible worlds?

1

2
3

Syntax and semantics: Terms

§ A term is something that refers to an
object; it can be
§ A constant symbol, e.g., A , B, EvilKingJohn

§ The possible world fixes these referents

§ A function symbol with terms as
arguments, e.g., BFF(EvilKingJohn)
§ The possible world specifies the value of the

function, given the referents of the terms
§ BFF(EvilKingJohn) -> BFF(2) -> 3

§ A logical variable, e.g., x
§ (more later)

A B EvilKingJohn

1

2
3

Syntax and semantics: Atomic sentences

§ An atomic sentence is an elementary
proposition (cf symbols in PL)
§ A predicate symbol with terms as arguments,

e.g., Knows(A, BFF(B))
§ Knows(A,BFF(B)) -> Knows(1,BFF(2)) -> Knows(1,3) -> F
§ True iff the objects referred to by the terms are

in the relation referred to by the predicate

§ An equality between terms, e.g., BFF(BFF(BFF(B)))=B
§ True iff the terms refer to the same objects
§ BFF(BFF(BFF(B)))=B -> BFF(BFF(BFF(2)))=2 -> BFF(BFF(3))=2

-> BFF(1)=2 -> 2=2 -> T

A B EvilKingJohn

1

2
3

Syntax and semantics: Complex sentences

§ Sentences with logical connectives
¬a, a Ù b, a Ú b, aÞ b, aÛ b

§ Sentences with universal or existential
quantifiers, e.g.,
§ "x Knows(x, BFF(x))

§ True in world w iff true in all extensions of w
where x refers to an object in w
§ x -> 1: Knows(1, BFF(1)) -> Knows(1,2) -> T
§ x -> 2: Knows(2, BFF(2)) -> Knows(2,3) -> T
§ x -> 3: Knows(3, BFF(3)) -> Knows(3,1) -> F

A B EvilKingJohn

1

2
3

x

Syntax and semantics: Complex sentences

§ Sentences with logical connectives
¬a, a Ù b, a Ú b, aÞ b, aÛ b

§ Sentences with universal or existential
quantifiers, e.g.,
§ $x Knows(x,BFF(x))

§ True in world w iff true in some extension of w
where x refers to an object in w
§ x -> 1: Knows(1,BFF(1)) -> Knows(1,2) -> T
§ x -> 2: Knows(2,BFF(2)) -> Knows(2,3) -> T
§ x -> 3: Knows(3,BFF(3)) -> Knows(3,1) -> F

A B EvilKingJohn

1

2
3

Fun with sentences

§ Everyone knows President Obama
§ "n Person(n) Þ Knows(n,Obama)

§ There is someone that nobody else knows
§ $s Person(s) Ù "n (Person(n) Ù ¬(n = s)) Þ ¬Knows(n,s)

§ Everyone knows someone
§ "x Person(x) Þ $y Person(y) Ù Knows(x,y)
§ "x (Person(x) Þ $y (Person(y) Ù Knows(x,y)))

More fun with sentences

§ Any two people of the same nationality speak a common language
§ Nationality(x,n) – x has nationality n
§ Speaks(x,l) – x speaks language l

§ "x,y [($ n Nationality(x,n) Ù Nationality(y,n)) Þ

($ l Speaks(x,l) Ù Speaks(y,l))]
§ "t (Alive(t) Û [Alive(t-1) Ù ¬$ g,x,y [Ghost(g) Ù At(Pacman,x,y,t-1) Ù At(g,x,y,t-1)]])

Conciseness of first order logic

§ Pacman can’t be in two places at once
§ FOL: " x1, y1, x2, y2, t (At(x1, y1, t) Ù At(x2, y2, t)) Þ (x1 = x2 Ù y1 = y2)
§ PL: ¬ (At_1,1_0 ∧ At_1,2_0) ∧ ¬ (At_1,1_0 ∧ At_1,3_0) ∧ ¬ (At_1,1_0 ∧ At_2,1_0) ∧ ¬

(At_1,1_0 ∧ At_2,2_0) ∧ ¬ (At_1,1_0 ∧ At_2,3_0) ∧ ¬ (At_1,1_0 ∧ At_3,1_0) ∧ ¬
(At_1,1_0 ∧ At_3,2_0) ∧ ¬ (At_1,1_0 ∧ At_3,3_0) ∧ …

§ And that’s just if he’s in the bottom left at the first timestep

Inference in FOL

§ Entailment is defined exactly as for propositional logic:
§ a |= b (“a entails b”) iff in every world where a is true, b is also true
§ E.g., "x Knows(x,Obama) entails $y"x Knows(x,y)

§ In FOL, we can go beyond just answering “yes” or “no”; given an
existentially quantified query, return a substitution (or binding) for the
variable(s) such that the resulting sentence is entailed:
§ KB = "x Knows(x,Obama)
§ Query = $y"x Knows(x,y)
§ Answer = Yes, s = {y/Obama}
§ Notation: as means applying substitution s to sentence a

§ E.g., if a= "x Knows(x,y) and s = {y/Obama}, then as = "x Knows(x,Obama)

Inference in FOL: Propositionalization
§ Convert (KB Ù ¬a) to PL, use a PL SAT solver to check (un)satisfiability

§ Trick: replace variables with ground terms, convert atomic sentences to symbols
§ $x Knows(x,Obama)

§ Knows(X1,Obama)
§ Knows_X1_Obama

§ "x Knows(x,Obama) and Democrat(Feinstein)
§ Knows(Obama,Obama) and Knows(Feinstein,Obama) and Democrat(Feinstein)
§ Knows_Obama_Obama Ù Knows_Feinstein_Obama Ù Democrat_Feinstein

§ "x Knows(Mother(x),x)
§ Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Mother(Obama)) …….

§ Real trick: for k = 1 to infinity:
§ Get a set of terms: constants, functions of constants, funcs of funcs of constants, … up to depth k
§ Propositionalize as if those are all the terms that exist
§ If a contradiction is found, halt; otherwise, continue

§ If FOL sentence is unsatisfiable, will find a contradiction for some finite k
(Herbrand); if not, may continue for ever; semidecidable

Inference in FOL: Lifted inference

§ Apply inference rules directly to first-order sentences, e.g.,
§ KB = Person(Socrates), "x Person(x) Þ Mortal(x)
§ conclude Mortal(Socrates)
§ The general rule is a version of Modus Ponens:

§ Given aÞb and a’, where as = a’s for some substitution s, conclude bs
§ s is {x/Socrates}

§ Given "x Knows(x,Obama) and "y, z Knows(y,z) Þ Likes(y,z)
§ s is {y/x, z/Obama}, conclude Likes(x,Obama)

§ Examples: Prolog (backward chaining), Datalog (forward chaining),
production rule systems (forward chaining), resolution theorem provers

Summary, pointers

§ FOL is a very expressive formal language
§ Many domains of common-sense and technical knowledge can be

written in FOL (see AIMA Ch. 10)
§ circuits, software, planning, law, taxes, network and security protocols,

product descriptions, ecommerce transactions, geographical information
systems, Google Knowledge Graph, Semantic Web, etc.

§ Inference is semidecidable in general; many problems are
efficiently solvable in practice

§ Inference technology for logic programming is especially efficient
(see AIMA Ch. 9)

