
Announcements

§ Project 3 is due Tuesday, 
February 27, 11:59pm PT

§ HW4 out later this week; due 
Friday, March 1, 11:59pm PT

§ Midterm: Tuesday, March 5, 
7pm PT (more info on website)

Pre-scan attendance 
QR code now!

(Password appears later)



CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Bayes Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents’ values

§ Bayes nets implicitly encode joint distributions

§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



§ Examples:

§ Posterior probability

§ Most likely explanation:

Inference

§ Inference: calculating some 
useful quantity from a joint 
probability distribution



Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z



Inference by Enumeration in Bayes Nets
§ Given unlimited time, inference in BNs is easy

§ Reminder of inference by enumeration by example:
B E

A

MJ

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)

Lots of repeated subexpressions!



Inference by Enumeration?
SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord



Variable elimination: The basic ideas

§ Consider: uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
§ 16 multiplies, 7 adds

§ Rewrite as: (u+v)(w+x)(y+z) 
§ 2 multiplies, 3 adds

§ Move summations inwards as far as possible
§ P(B | j, m) =  α åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
§ =  α P(B) åe P(e) åa P(a|B,e) P(j|a) P(m|a)

§ Do the calculation from the inside out
§ i.e., sum over a first, then sum over e
§ Note: P(a|B,e) isn’t a single number, it’s a table!



Inference by Enumeration vs. Variable Elimination
§ Why is inference by enumeration so slow?

§ You join up the whole joint distribution before 
you sum out the hidden variables

§ Idea: interleave joining and marginalizing!
§ Called “Variable Elimination”
§ Still NP-hard, but usually much faster than 

inference by enumeration

§ First we’ll need some new notation: factors



Factor Zoo



Factor Zoo I

§ Joint distribution: P(X,Y)
§ Entries P(x,y) for all x, y
§ Sums to 1

§ Selected joint: P(x,Y)
§ A slice of the joint distribution
§ Entries P(x,y) for fixed x, all y
§ Sums to P(x)

§ Number of capitals = 
dimensionality of the table

W

T sun rain

hot 0.4 0.1

cold 0.2 0.3

W

T sun rain

cold 0.2 0.3



Factor Zoo II

§ Single conditional: P(Y | x)
§ Entries P(y | x) for fixed x, all y
§ Sums to 1

§ Family of conditionals: 
P(Y | X)
§ Multiple conditionals
§ Entries P(y | x) for all x, y
§ Sums to |X|

W

T sun rain

hot 0.8 0.2

cold 0.4 0.6

W

T sun rain

cold 0.4 0.6



Factor Zoo III

§ Specified family: P( y | X )
§ Entries P(y | x) for fixed y,

but for all x
§ Sums to … who knows!

W

T rain

hot 0.2

cold 0.6



Factor Zoo Summary

§ In general, when we write P(Y1 … YN | X1 … XM)

§ It is a “factor,” a multi-dimensional array

§ Its values are P(y1 … yN | x1 … xM)

§ Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

§ Sometimes we’ll write P(A,b|c,D) as fi(A,b,c,D)––just another name for the same table.



Traffic Domain

Raining Traffic Late for class!



Example: Traffic Domain

§ Random Variables
§ R: Raining
§ T: Traffic
§ L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)



Variable Elimination (VE)



Inference by Enumeration: Procedural Outline

§ Track objects called factors
§ Initial factors are local CPTs (one per node)

§ Any known values are selected
§ E.g. if we know                  , the initial factors are

§ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9



Operation 1: Join Factors

§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables 

involved

§ Example: Join on R

§ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Example: Multiple Joins



Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T



Operation 2: Eliminate

§ Second basic operation: marginalization

§ Take a factor and sum out a variable
§ Shrinks a factor to a smaller one

§ A projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)



Marginalizing Early (= Variable Elimination)



Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Evidence

§ If evidence, start with factors that select that evidence
§ No evidence uses these initial factors:

§ Computing                        , the initial factors become:

§ We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9



Evidence II

§ Result will be a selected joint of query and evidence
§ E.g. for P(L | +r), we would end up with:

§ To get our answer, just normalize this!

§ That’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



General Variable Elimination

§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables 
(not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize



Example

Choose A



Example

Choose E

Finish with B

Normalize



Same Example in Equations

marginal obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Order matters

§ Order the terms Z, A, B C, D
§ P(D) =  α åz,a,b,c P(z) P(a|z) P(b|z) P(c|z) P(D|z)
§ =  α åz P(z) åa P(a|z) åb P(b|z) åc P(c|z) P(D|z)
§ Largest factor has 2 variables (D,Z)

§ Order the terms A, B C, D, Z
§ P(D) =  α åa,b,c,z P(a|z) P(b|z) P(c|z) P(D|z) P(z) 
§ =  α åa åb åc åz P(a|z) P(b|z) P(c|z) P(D|z) P(z)
§ Largest factor has 4 variables (A,B,C,D)
§ In general, with n leaves, factor of size 2n

D

Z

A B C



Example Bayes Net: Car Insurance

SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord

Enumeration: 227M operations

Elimination: 221K operations



Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor (and it’s space that kills you)

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., ZABCD example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!



Worst Case Complexity? Reduction from SAT

§ Variables: W, X, Y, Z
§ CNF clauses:

1. C1 = W v X v Y
2. C2 = Y v Z v ¬W
3. C3 = X v Y v ¬Z

§ Sentence S = C1 Ù C2 ÙC3
§ P(S) > 0 iff S is satisfiable

§ => NP-hard
§ P(S) = K x 0.5n where K is the 

number of satisfying 
assignments for clauses
§ => #P-hard

S

C1 C2 C3

¬ 
¬ W X Y Z

0.5 0.50.50.5



Polytrees

§ A polytree is a directed graph with 
no undirected cycles

§ For poly-trees the complexity of 
variable elimination is linear in the 
network size if you eliminate from 
the leaves towards the roots

§ Cut-set conditioning for near-
polytrees
§ Choose set of variables such that if

removed, only a polytree remains
§ Solve each polytree separately



Summary

§ Exact inference = sums of products of 
conditional probabilities from the network

§ Enumeration is always exponential

§ Variable elimination reduces this by avoiding 
the recomputation of repeated subexpressions
§ Massive speedups in practice
§ Linear time for polytrees

§ Exact inference is #P-hard

§ Next: approximate inference


