## Announcements

- Project 3 is due Tuesday, February 27, 11:59pm PT
- HW4 out later this week; due Friday, March 1, 11:59pm PT
- Midterm: Tuesday, March 5, 7pm PT (more info on website)


Pre-scan attendance QR code now!
(Password appears later)

## CS 188: Artificial Intelligence

## Bayes Nets: Exact Inference



## Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over $X$, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes nets implicitly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$



## Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability

$$
P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)
$$

- Most likely explanation:

$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$



## Inference by Enumeration

- General case
- Evidence variables:
- Query* variable:
- Hidden variables:

- We want: multiple query variables, too

$$
P\left(Q \mid e_{1} \ldots e_{k}\right)
$$

- Step 1: Select the entries consistent with the evidence

- Step 2: Sum out H to get joint of Query and evidence

- Step 3: Normalize


$$
P\left(Q \mid e_{1} \cdots e_{k}\right)=\frac{1}{Z} P\left(Q, e_{1} \cdots e_{k}\right)
$$

## Inference by Enumeration in Bayes Nets

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$
\begin{aligned}
& \text { - Given unlimited time, inference in } \mathrm{BNs} \text { is easy } \\
& \text { - Reminder of inference by enumeration by example: } \\
& P(B \mid+j,+m) \propto_{B} P(B,+j,+m) \\
& =\sum_{e, a} P(B, e, a,+j,+m) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(+j \mid a) P(+m \mid a) \\
& =P(B) P(+e) P(+a \mid B,+e) P(+j \mid+a) P(+m \mid+a)+P(B) P(+e) P(-a \mid B,+e) P(+j \mid-a) P(+m \mid-a) \\
& P(B) P(-e) P(+a \mid B,-e) P(+j \mid+a) P(+m \mid+a)+P(B) P(-e) P(-a \mid B,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Lots of repeated subexpressions!

## Inference by Enumeration?



## Variable elimination: The basic ideas

- Consider: uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
- 16 multiplies, 7 adds
- Rewrite as: $(u+v)(w+x)(y+z)$
- 2 multiplies, 3 adds
- Move summations inwards as far as possible
- $P(B \mid j, m)=\alpha \sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$
- $\quad=\alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)$

- Do the calculation from the inside out
- i.e., sum over a first, then sum over $e$
- Note: $P(a \mid B, e)$ isn't a single number, it's a table!


## Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

- First we'll need some new notation: factors

Factor Zoo


## Factor Zoo I

- Joint distribution: $P(X, Y)$
- Entries $P(x, y)$ for all $x, y$
- Sums to 1
$P(T, W)$

|  | W |  |
| :---: | :---: | :---: |
| T | sun | rain |
| hot | 0.4 | 0.1 |
| cold | 0.2 | 0.3 |

- Selected joint: $\mathrm{P}(\mathrm{x}, \mathrm{Y})$
- A slice of the joint distribution
- Entries $P(x, y)$ for fixed $x$, all $y$
- Sums to $P(x)$



## Factor Zoo II

- Single conditional: $P(Y \mid x)$
- Entries P(y|x) for fixed $x$, all
- Sums to 1

$P(W \mid$ cold $)$

|  | W |  |
| :---: | :---: | :---: |
| T | sun | rain |
| cold | 0.4 | 0.6 |

- Family of conditionals: $P(Y \mid X)$
- Multiple conditionals
- Entries $P(y \mid x)$ for all $x, y$
- Sums to $|X|$

\(\begin{array}{l}P(W \mid T) <br>

\)|  | W |  |
| :---: | :---: | :---: |
|  T  |  sun  |  rain  |
|  hot  | 0.8 | 0.2 |
|  cold  | 0.4 | 0.6 |\(\left.\} P(W \mid hot) <br>


\hline\end{array}\right\}\)|  |
| :--- |

## Factor Zoo III

- Specified family: $P(y \mid X)$
- Entries $P(y \mid x)$ for fixed $y$, but for all x
- Sums to ... who knows!
$P($ rain $\mid T)$

|  | W |
| :---: | :---: |
| T | rain |
| hot | 0.2 |
| cold | 0.6 |



## Factor Zoo Summary

- In general, when we write $P\left(Y_{1} \ldots Y_{N} \mid X_{1} \ldots X_{M}\right)$
- It is a "factor," a multi-dimensional array
- Its values are $P\left(y_{1} \ldots y_{N} \mid x_{1} \ldots x_{M}\right)$
- Any assigned (=lower-case) $X$ or $Y$ is a dimension missing (selected) from the array
- Sometimes we'll write $P(A, b \mid c, D)$ as $f_{i}(A, b, c, D)$ - just another name for the same table.



## Traffic Domain



## Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!

$$
\begin{aligned}
P(L) & =? \\
& =\sum_{r, t} P(r, t, L) \\
& =\sum_{r, t} P(r) P(t \mid r) P(L \mid t)
\end{aligned}
$$

$P(R)$

| $+r$ | 0.1 |
| :---: | :---: |
| $-r$ | 0.9 |

$P(T \mid R)$

| $+r$ | $+t$ | 0.8 |
| :---: | :---: | :---: |
| $+r$ | $-t$ | 0.2 |
| $-r$ | $+t$ | 0.1 |
| $-r$ | $-t$ | 0.9 |

$P(L \mid T)$

| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

## Variable Elimination (VE)



## Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

| $P(R)$ |  |
| :---: | :---: |
| $+r$ | 0.1 |
| $-r$ | 0.9 |


| $P(T \mid R)$ |  |  |
| :---: | :---: | :---: |
| +r | +t | 0.8 |
|  |  |  |
|  |  |  |
|  |  |  |



- E.g. if we know $L=+\ell$, the initial factors are

| $P(R)$ |  |
| :--- | :--- |
| $+r$ | 0.1 |
| $-r$ | 0.9 |

$P(T \mid R)$

| $+r$ | $+t$ | 0.8 |
| :---: | :---: | :---: |
| $+r$ | $-t$ | 0.2 |
| $-r$ | $+t$ | 0.1 |
| $-r$ | $-t$ | 0.9 |

$P(+\ell \mid T)$

| +t | +1 | 0.3 |
| :---: | :---: | :---: |
| -t | +1 | 0.1 |



- Procedure: Join all factors, eliminate all hidden variables, normalize


## Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables
 involved
- Example: Join on R
$P(R) \times P(T \mid R)$$\quad \rightarrow \quad P(R, T)$
- Computation for each entry: pointwise products $\quad \forall r, t: \quad P(r, t)=P(r) \cdot P(t \mid r)$

Example: Multiple Joins

$\Rightarrow$


## Example: Multiple Joins


$P(R)$


## Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

| $+r$ | +t | 0.08 |
| :---: | :---: | :---: |
| +r | -t | 0.02 |
| -r | +t | 0.09 |
| -r | -t | 0.81 |

sum $R$

$\square$ | $P(T)$ |  |
| :---: | :---: |
| t | 0.17 |
| -t | 0.83 |

## Multiple Elimination



Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)


## Marginalizing Early (= Variable Elimination)



## Marginalizing Early! (aka VE)



## Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:

| $P(R)$ |  |
| :--- | :---: |
| $+r$ 0.1 <br> $-r$ 0.9 |  |


|  |  |  |
| :---: | :---: | :---: |
| +r | +t | 0.8 |
| +r | -t | 0.2 |
|  | +t |  |
|  | -t |  |

$$
P(L \mid T)
$$

| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

- Computing $P(L \mid+r)$ the initial factors become:

| $P(+r)$ |  |
| :---: | :---: |
| $+r \mid 0.1$ |  |

$$
\begin{aligned}
& P(T \mid+r) \\
& \begin{array}{|l|l|l|}
\hline+r & +t & 0.8 \\
\hline+r & -t & 0.2 \\
\hline
\end{array}
\end{aligned}
$$

$P(L \mid T)$

| +t | +l | 0.3 |
| :---: | :---: | :---: |
| +t | -l | 0.7 |
| -t | +l | 0.1 |
| -t | -l | 0.9 |

- We eliminate all vars other than query + evidence



## Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $P(L \mid+r)$, we would end up with:

| $P(+r, L)$ |  |  | Normalize | $P(L \mid+r)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| +r | +1 | 0.026 |  | +1 | 0.26 |
| +r | -I | 0.074 |  | - | 0.74 |

- To get our answer, just normalize this!
- That's it!



## General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)



## Example

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$



Choose A

$$
\left.\begin{array}{l}
P(A \mid B, E) \\
P(j \mid A) \\
P(m \mid A)
\end{array} \quad \boxed{\times} P(j, m, A \mid B, E) \quad \sum\right\rangle P(j, m \mid B, E)
$$

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

## Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E

$$
\begin{array}{ccc}
P(E) \\
P(j, m \mid B, E) & \boxed{\times} P(j, m, E \mid B) \quad \underset{\sum}{ } P(j, m \mid B) .
\end{array}
$$

$P(B) \quad P(j, m \mid B)$

Finish with B

$$
\begin{gathered}
P(B) \\
P(j, m \mid B)
\end{gathered} \stackrel{\times}{ } \quad P(j, m, B) \stackrel{\text { Normalize }}{\text { N }} P(B \mid j, m)
$$

## Same Example in Equations

$$
P(B \mid j, m) \propto P(B, j, m)
$$

$P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)$

$$
\begin{aligned}
P(B \mid j, m) & \propto P(B, j, m) \\
& =\sum_{e, a} P(B, j, m, e, a) \\
& =\sum_{e, a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a) \\
& =\sum_{e} P(B) P(e) f_{1}(B, e, j, m) \\
& =P(B) \sum_{e} P(e) f_{1}(B, e, j, m) \\
& =P(B) f_{2}(B, j, m)
\end{aligned}
$$

marginal obtained from joint by summing out
use Bayes' net joint distribution expression
use $x^{*}(y+z)=x y+x z$
joining on $a$, and then summing out gives $f_{1}$
use $x^{*}(y+z)=x y+x z$
joining on $e$, and then summing out gives $f_{2}$

## Order matters

- Order the terms Z, A, B C, D
- $P(D)=\alpha \sum_{z, a, b, c} P(z) P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z)$
- $\quad=\alpha \sum_{z} P(z) \sum_{a} P(a \mid z) \sum_{b} P(b \mid z) \sum_{c} P(c \mid z) P(D \mid z)$
- Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
- $P(D)=\alpha \sum_{a, b, c, z} P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z) P(z)$
- $\quad=\alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a \mid z) P(b \mid z) P(c \mid z) P(D \mid z) P(z)$
- Largest factor has 4 variables (A,B,C,D)
- In general, with $n$ leaves, factor of size $2^{n}$


## Example Bayes Net: Car Insurance



Enumeration: $\mathbf{2 2 7 M}$ operations
Elimination: 221 K operations

## Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., ZABCD example $2^{n}$ vs. 2
- Does there always exist an ordering that only results in small factors?
- No


## Worst Case Complexity? Reduction from SAT



- Variables: $W, X, Y, Z$
- CNF clauses:

1. $C_{1}=W \vee X \vee Y$
2. $C_{2}=Y \vee Z \vee \neg W$
3. $C_{3}=X \vee Y \vee \neg Z$

- Sentence $S=C_{1} \wedge C_{2} \wedge C_{3}$
- $P(S)>0$ iff $S$ is satisfiable - => NP-hard
- $P(S)=K \times 0.5^{n}$ where $K$ is the number of satisfying assignments for clauses
- => \#P-hard


## Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of
 variable elimination is linear in the network size if you eliminate from the leaves towards the roots
- Cut-set conditioning for nearpolytrees
- Choose set of variables such that if
 removed, only a polytree remains
- Solve each polytree separately


## Summary

- Exact inference = sums of products of conditional probabilities from the network
- Enumeration is always exponential
- Variable elimination reduces this by avoiding the recomputation of repeated subexpressions
- Massive speedups in practice
- Linear time for polytrees
- Exact inference is \#P-hard

- Next: approximate inference

