Announcements

" Project 3 is due Tuesday,
February 27, 11:59pm PT

[=] 37 [m]

[=]

Pre-scan attendance
QR code now!

= HW4 out later this week; due
Friday, March 1, 11:59pm PT

" Midterm: Tuesday, March 5,
7pm PT (more info on website)

(Password appears later)



CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Bayes Net Representation

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents  values

P(X|ay...an)
= Bayes nets implicitly encode joint distributions

= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))
i=1




Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢g)

= Most likely explanation:

argmax, P(Q =q|E1 =eq...)




Inference by Enumeration

* Works fine with

" General case: = We want: multiple query
= Evidence variables: Fi...E,=e1...¢e X1, Xo X, variables, too
, X0, ...
= Query* variable:
Query @ Al variables P(Qle1...ex)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Ped
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-Nf Z:ZP(Q,61°-~ek)
P(Q,e1...ep) = D P(Q,hl...hr,el...eﬁ) q
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1 Xl,XZ..Xn P(Q‘el"'ek):ZP(Qael"'ek)



Inference by Enumeration in Bayes Nets

= Given unlimited time, inference in BNs is easy e e
= Reminder of inference by enumeration by example:
P(B|+j,+m) xp P(B,+j,+m) °

= ZP(B,e,a, +7,+m)

— ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B, +¢)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m| + a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)

Lots of repeated subexpressions!



Inference by Enumeration?

Age >(_SocioEcon

GoodStudent @
MakeModel VehicleYear
>

RiskAversion
1 )
riving f' I~

-
DrivingRecord Ruggedness
J

DrivingBehavior W' \ m
@' ,
OwnCarDamage

MedicalCost LiabilityCost PropertyCost




Variable elimination: The basic ideas

Consider: uwy + Uwz + uxy + Uxz + vwy + VWz + vXy +vxz
= 16 multiplies, 7 adds

Rewrite as: (u+v)(w+x)(y+z)

= 2 multiplies, 3 adds

Move summations inwards as far as possible

= P(B | j,m)= a2,.,P(B)P(e) P(a]|B,e) P(jla) P(m|a)
. = a P(B) 2. P(e) 24P(a|B,e) P(j|a) P(m]a)
Do the calculation from the inside out

= j.e., sum over a first, then sum over e
*= Note: P(a|B,e) isn’t a single number, it’s a table!



Inference by Enumeration vs. Variable Elimination

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors



Factor Zoo

/ \




Factor Zoo |

P(T,W)

= Joint distribution: P(X,Y) W
= Entries P(x,y) for all x, y T sun | rain
= Sumstol hot 0.4 | 0.1
cold 0.2 0.3

= Selected joint: P(x,Y)

= A slice of the joint distribution P(cold, W)

= Entries P(x,y) for fixed x, all y W

= Sums to P(x) T sun | rain
cold 0.2 0.3

= Number of capitals =

dimensionality of the table



Factor Zoo |l

= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all

P(W |cold)

W

= Sumstol

T sun rain

cold 0.4 0.6

P(W|T)

= Family of conditionals:
P(Y [ X)

= Multiple conditionals

T sun rain

hot | 08 |02]|} P(W|hot)
cold | 04 |06]|} P(W|cold)

= Entries P(y | x) forall x, y
= Sums to |X]|




Factor Zoo llI

= Specified family: P(y | X)
" Entries P(y | x) for fixedy,
but for all x
= Sums to ... who knows!

P(rain|T')
W
T rain

hot |02 |} P(rain|hot)
cold | 06 | P(rain|cold)




Factor Zoo Summary

" |n general, when we write P(Y; ... Yy | X; ... Xy)

It is a “factor,” a multi-dimensional array

Its values are P(y; ... Yy | X{ ... Xp)

Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array

Sometimes we’ll write P(A,b|c,D) as f(A,b,c,D)—just another name for the same table.

NN N
NIRSSSS




Traffic Domain

f.d_f-bj i wvb W \\.1
.w»OW@

Raining Traffic Late for class!




Example: Traffic Domain

= Random Variables ﬁ(Ro)l
* R: Raining (R) |09
= T: Traffic P(T|R)
" |: Late for class! @ I: +tt 8223
-r +t 0.1
P(L) — 7 e -r -t | 0.9
B Z Pt L) +tP(I:r||T)o.3
™t + | -1 | 0.7
=Y P(r)P(t|r)P(L|t) T




Variable Elimination (VE)




Inference by Enumeration: Procedural Outline

" Track objects called factors
= |nitial factors are local CPTs (one per node)

M
P(R) P(T\R)  P(L|T) S,?“ —
>

-r 0.9 +r -t | 0.2 +t -| 0.7
-r +t | 0.1 -t +l 0.1

- | -t |09 -t -1 | 0.9 Q

= Any known values are selected
= E.g.if we know [, = 4/, the initial factors are

P(R) P(T|R)  P(+4T)
+r 0.1 +r | +t [ 0.8 +t +| 0.3
-r 0.9 +r -t | 0.2 -t +| 0.1

-r + [ 0.1
-r -t |1 0.9

= Procedure: Join all factors, eliminate all hidden variables, normalize



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
= Just like a database join % —1
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: Joinon R

(%) P(R) x P(T|R) =—=> P(RT)

+r 0.1 +r | +t (0.8 +r | +t | 0.08

-r 0.9 +r | -t [0.2 +r | -t | 0.02

G o |+t |01 r | +t | 0.09
-r| -t [0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V1, ¢ : P(T, t) - P(T) ' P(t|?“)




Example: Multiple Joins

(-
L §




Example: Multiple Joins f.».

T & |

+r | 0.1

+r] +t ] 0.08
P(TIR) > ] t]002 >
+r | +t (0.8 | +t]0.09
+r |t [0.2 -r | -t[0.81 R, T P(R,T, L)
or |+t (0.1 +r | +t | + ]0.024
ol -t10.9 j +r | +t -1 | 0.056

+r -t + | 0.002

P(L|T) P(L|T) +r -t -1 | 0.018
+t | +1 |0.3 +t | +1 |0.3 -r +t + | 0.027
+t | -1 |0.7 +t | -l (0.7 -r +t -| 0.063
-t | 41 |0.1 -t | +l [0.1 -r -t + | 0.081
-t | -l 0.9 -t | -l {0.9 -r -t | 0.729




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
= Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T)
wTsoss] sum R P

+r | -t | 0.02 |:> +t

-r | +t | 0.09 -1
-r| -t | 0.81




P(R,T,L)

Multiple Elimination

Lo

+r

+t

+l

0.024

+r

+t

0.056

+r

-t

+l

0.002

+r

-t

0.018

+t

+l

0.027

0.063

+l

0.081

1 1 1 1
- - - -

0.729

Sum
out R

P(T, L)

0.051

0.119

0.083

0.747

Sum
out T

®

P(L)

+ | 0.134

-l 10.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Q

(



Marginalizing Early (= Variable Elimination)




P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

-t

+l

0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

R, T

®

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

Sum out R

—>

P(T)

+t

0.17

-t

0.83

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

JoinT

—>

Sumout T

Lo

P(T, L)

—>

+t

+l

0.051

+t

0.119

+l

0.083

0.747

®

P(L)

+]

0.134

0.866




Evidence

= |f evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R)  P(T|R)  P(LIT) NA

+r 0.1 +r | +t | 0.8 +t + [ 0.3

che Rl o [ A
T | t |09 t | -1 |09

—

=

| -(x
. ComputingP(L| -+ 'r)the initial factors become: 1&%’
wﬂ
P(+r) P(T|+r) P(L|T) &}/‘ 7
+r 0.1 +r | +t |08 +t | + |03 =
+r | -t | 0.2 + | -l |07

t | + |01 ""3~ & ==
-t | 0.9 S@

= We eliminate all vars other than query + evidence =>



Evidence |l

= Result will be a selected joint of query and evidence
= E.g.forP(L | +r), we would end up with:

P("‘Ta L) Normalize P(L ‘|‘T)

+r | +l | 0.026 B :: +l | 0.26
+r| -l | 0.074 -l 1 0.74

= To get our answer, just normalize this!

= That's it!



General Variable Elimination

Query: P(Q|E1 =e1,... L = ek) e

Start with initial factors: = |
= Local CPTs (but instantiated by evidence) o |

While there are still hidden variables . .

(not Q or evidence):
= Pick a hidden variable H
= Join all factors mentioning H i Q ! .

= Eliminate (sum out) H

Join all remaining factors and normalize
(- X5



Example

P(B|j,m) o« P(B,j,m)

P(B) P(E) P(A|B, E) P(lA)  P(m|A)
Choose A
P(A|B,E)
P(j|A) X > P(j,m,A|B,E) [ ¥ > P(j,m|B, L)
P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
PLE) :><> P(j,m, E|B) jz > P(j,m|B)
P(j,m|B, F) y
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m7B) Normalize > P(B’j, WL)



Same Example in Equations

P(B|j,m) o« P(B,j,m)

P(B)

P(E) P(A|B, E) P(jlA)  P(m|A)

P(B|j,m)

P(B,j,m)
ZP(Bajamaeaa’)
€,a

> P(B)P(e)P(alB,e)P(jla) P(m|a)
> P(B)P(e)y_ P(alB,e)P(jla)P(m|a)
> P(B)P(e)f1(B,e,j,m)

P(B)»_ P(e)f1(B,e,j,m)
P(B)fQ(Baja m)

marginal obtained from joint by summing out
use Bayes’ net joint distribution expression
use x*(y+z) = xy + xz

joining on a, and then summing out gives f;
use x*(y+z) =xy + xz

joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Order matters

= Order thetermsZ, A,BC, D e
= P(D)= a2,,,.Pz) Plalz) P(b|z) P(c|z) P(D|2)

" = a 2,P(2)X,Plalz) Xy P(bl2) X Plc|z) P(D]2) ° 0 e 0

= Largest factor has 2 variables (D,Z)
= Order theterms A,BC, D, Z
" P(D) = a2y, Plalz) P(b]z) P(c|2) P(D]z) P(z)
" = o 2,22 2,Plalz) P(b|z) P(c|z) P(D|z) P(z)
= Largest factor has 4 variables (A,B,C,D)

= |n general, with n leaves, factor of size 2"



Example Bayes Net: Car Insurance

> SocioEcon Enumeration: 227M operations

GoodStudent

RiskAversion

Elimination: 221K operations

Age
/
DrivingSKkill
DrivingRecord

DrivingBehavior

MedicalCost LiabilityCost PropertyCost



Computational and Space Complexity

* The computational and space complexity of variable elimination is
determined by the largest factor (and it’s space that kills you)

" The elimination ordering can greatly affect the size of the largest factor.
= E.g., ZABCD example 2" vs. 2

" Does there always exist an ordering that only results in small factors?
= Nol!



Worst Case Complexity? Reduction from SAT

0.5

0.5

0.5

0.5

Variables: W, X, Y, Z
CNF clauses:
1. CG,=WvXvY

2. G=YvZv-W
3. GG=XvYv—Z

Sentence $=C;, A G, AG
P(S) > 0 iff S is satisfiable
= => NP-hard

P(S) = K x 0.5" where K is the
number of satisfying
assignments for clauses

= => #P-hard



Polytrees

= A polytree is a directed graph with
no undirected cycles

" For poly-trees the complexity of
variable elimination is linear in the
network size if you eliminate from
the leaves towards the roots

= Cut-set conditioning for near-
polytrees

= Choose set of variables such that if
removed, only a polytree remains

= Solve each polytree separately



Summary

= Exact inference = sums of products of
conditional probabilities from the network

= Enumeration is always exponential

= Variable elimination reduces this by avoiding
the recomputation of repeated subexpressions

= Massive speedups in practice
" Linear time for polytrees

= Exactinference is #P-hard

= Next: approximate inference



