Announcements

- Project 3 is due Tuesday,
 February 27, 11:59pm PT
- HW4 out later this week; due Friday, March 1, 11:59pm PT
- Midterm: Tuesday, March 5,
 7pm PT (more info on website)

Pre-scan attendance QR code now!

(Password appears later)

CS 188: Artificial Intelligence

Bayes Nets: Exact Inference

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Bayes Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Inference

 Inference: calculating some useful quantity from a joint probability distribution

• Examples:

Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Most likely explanation:
 - $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \ldots)$

Inference by Enumeration

- General case:
- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n$ Query* variable:QAll variablesHidden variables: $H_1 \dots H_r$ All variables
- We want:

P

* Works fine with multiple query variables, too

 $P(Q|e_1\ldots e_k)$

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

Step 3: Normalize

$$(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k}_{X_1, X_2, \dots X_n})$$

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Inference by Enumeration in Bayes Nets

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

 $P(B \mid +j,+m) \propto_B P(B,+j,+m)$

$$=\sum_{e,a} P(B,e,a,+j,+m)$$

 $= \frac{P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a)}{P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)}$ $\frac{P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)}{P(B)P(-a|B,-e)P(+j|-a)P(+m|-a)} = \frac{P(B)P(-a|B,-e)P(+a|B,-e$

Lots of repeated subexpressions!

e,a

Inference by Enumeration?

Variable elimination: The basic ideas

- Consider: uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
 - 16 multiplies, 7 adds
- Rewrite as: (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds
- Move summations inwards as far as possible
 - $P(B \mid j, m) = \alpha \sum_{e,a} P(B) P(e) P(a \mid B,e) P(j \mid a) P(m \mid a)$
 - $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a | B, e) P(j | a) P(m | a)$
- Do the calculation from the inside out
 - i.e., sum over *a* first, then sum over *e*
 - Note: P(a | B,e) isn't a single number, it's a table!

Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration

First we'll need some new notation: factors

Factor Zoo

Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1

P(T,W)				
W				
T sun rain				
hot	0.4	0.1		
cold	0.2	0.3		

Selected joint: P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for fixed x, all y
- Sums to P(x)
- Number of capitals = dimensionality of the table

	W	
Т	sun	rain
cold	0.2	0.3

Factor Zoo II

- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all
 - Sums to 1

P(W|cold)

	W	
Т	sun	rain
cold	0.4	0.6

- Family of conditionals:
 P(Y | X)
 - Multiple conditionals
 - Entries P(y | x) for all x, y
 - Sums to |X|

P((W T)		
	W		
Т	sun	rain	
hot	0.8	0.2	P(W hot)
cold	0.4	0.6	ight brace P(W cold)

Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

```
P(rain|T)
```

	W	
Т	rain	
hot	0.2	P(rain hot)
cold	0.6	P(rain cold)

Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N | X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are $P(y_1 \dots y_N | x_1 \dots x_M)$
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array
 - Sometimes we'll write P(A,b|c,D) as f_i(A,b,c,D)—just another name for the same table.

Traffic Domain

Example: Traffic Domain

- Random Variables
 - R: Raining
 - T: Traffic
 - L: Late for class!

$$P(L) = ?$$

= $\sum_{r,t} P(r,t,L)$
= $\sum_{r,t} P(r)P(t|r)P(L|t)$

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

Variable Elimination (VE)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)			
-r 0.9			

D(D)

P(L T)				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-	0.9		

 $D(T \mid m)$

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

$P(\cdot$	$+\ell $	1)
+t	+	0.3
-t	+	0.1

D(1)

Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

• Example: Join on R

Computation for each entry: pointwise products
 $orall r_i$

 $\forall r, t : P(r, t) = P(r) \cdot P(t|r)$

Example: Multiple Joins

Operation 2: Eliminate

+t

-t

- Second basic operation: marginalization
- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Marginalizing Early! (aka VE)

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(L T	')
	. 1	<u> </u>

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-	0.9

• Computing P(L| + r) the initial factors become:

$$\begin{array}{c|c} P(+r) & P(T|+r) \\ \hline +r & 0.1 & & \\ \hline +r & -t & 0.2 & \\ \hline \end{array}$$

$$\begin{array}{c|c} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \end{array}$$

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

• Query:
$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

Example

$$P(B)$$
 $P(E)$ $P(j,m|B,E)$

Example

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B)$$
 $P(E)$ $P(A|B,E)$ $P(j|A)$ $P(m|A)$

 $P(B|j,m) \propto P(B,j,m)$

$$=\sum_{e,a}P(B,j,m,e,a)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$$

$$= \sum_{e} P(B)P(e)f_1(B, e, j, m)$$

$$= P(B) \sum_{e} P(e) f_1(B, e, j, m)$$

$$= P(B)f_2(B,j,m)$$

marginal obtained from joint by summing out use Bayes' net joint distribution expression use $x^*(y+z) = xy + xz$

Α

Μ

joining on a, and then summing out gives f_1

use
$$x^*(y+z) = xy + xz$$

joining on e, and then summing out gives f_2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Order matters

Α

В

- Order the terms Z, A, B C, D
 - $P(D) = \alpha \sum_{z,a,b,c} P(z) P(a | z) P(b | z) P(c | z) P(D | z)$
 - $= \alpha \sum_{z} P(z) \sum_{a} P(a | z) \sum_{b} P(b | z) \sum_{c} P(c | z) P(D | z)$
 - Largest factor has 2 variables (D,Z)
- Order the terms A, B C, D, Z
 - $P(D) = \alpha \sum_{a,b,c,z} P(a | z) P(b | z) P(c | z) P(D | z) P(z)$
 - $= \alpha \sum_{a} \sum_{b} \sum_{c} \sum_{z} P(a | z) P(b | z) P(c | z) P(D | z) P(z)$
 - Largest factor has 4 variables (A,B,C,D)
 - In general, with n leaves, factor of size 2ⁿ

Example Bayes Net: Car Insurance

Enumeration: 227M operations

Elimination: 221K operations

Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor (and it's space that kills you)
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., ZABCD example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity? Reduction from SAT

- Variables: W, X, Y, Z
- CNF clauses:
 - $1. \quad C_1 = W \lor X \lor Y$
 - $2. \quad C_2 = Y \vee Z \vee \neg W$
 - $3. \quad C_3 = X \vee Y \vee \neg Z$
- Sentence $S = C_1 \wedge C_2 \wedge C_3$
- P(S) > 0 iff S is satisfiable
 => NP-hard
- P(S) = K x 0.5ⁿ where K is the number of satisfying assignments for clauses
 - => #P-hard

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees the complexity of variable elimination is *linear in the network size* if you eliminate from the leaves towards the roots
- Cut-set conditioning for nearpolytrees
 - Choose set of variables such that if removed, only a polytree remains
 - Solve each polytree separately

Summary

- Exact inference = sums of products of conditional probabilities from the network
- Enumeration is always exponential
- Variable elimination reduces this by avoiding the recomputation of repeated subexpressions
 - Massive speedups in practice
 - Linear time for polytrees
- Exact inference is #P-hard
- Next: approximate inference

