Quick Warm-Up

- Suppose we have a biased coin that comes up heads with some unknown probability p; how can we use it to produce random bits with probabilities of exactly 0.5 for 0 and 1?

Quick Warm-Up

- Suppose we have a biased coin that comes up heads with some unknown probability p; how can we use it to produce random bits with probabilities of exactly 0.5 for 0 and 1?
- Answer (von Neumann):
- Flip coin twice, repeat until the outcomes are different
- HT = $0, \mathrm{TH}=1$, each has probability $p(1-p)$

CS 188: Artificial Intelligence

Bayes Nets: Approximate Inference

Instructors: Stuart Russell and Dawn Song
University of California, Berkeley

Sampling

- Why sample?
- Basic idea
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Often very fast to get a decent approximate answer
- The algorithms are very simple and general (easy to apply to fancy models)
- They require very little memory $(O(n))$
- They can be applied to large models, whereas exact algorithms blow up

Example

- Suppose you have two agent programs \boldsymbol{A} and \boldsymbol{B} for Monopoly
- What is the probability that \boldsymbol{A} wins?
- Method 1:
- Let s be a sequence of dice rolls and Chance and Community Chest cards
- Given s, the outcome $V(s)$ is determined (1 for a win, 0 for a loss)
- Probability that A wins is $\sum_{s} P(s) V(s)$
- Problem: infinitely many sequences s !
- Method 2:
- Sample N sequences from $P(s)$, play N games (maybe 100)
- Probability that A wins is roughly $1 / N \sum_{i} V\left(s_{i}\right)$ i.e., fraction of wins in the sample

Sampling basics: discrete (categorical) distribution

- To simulate a biased d-sided coin $P(x)$:
- Step 1: Get sample u from uniform distribution over [0, 1)
- E.g. random() in python
- Step 2: Convert this sample u into an outcome for the given distribution by associating each outcome x_{i} with a $P\left(x_{i}\right)$ sized sub-interval of $[0,1)$
- Example

C	$P(C)$
red	0.6
green	0.1
blue	0.3

$0.0 \leq u<0.6, \rightarrow C=r e d$ $0.6 \leq u<0.7, \rightarrow C=$ green $0.7 \leq u<1.0, \rightarrow C=$ blue

ね $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

- If random() returns $u=0.83$, then the sample is $C=$ blue
- E.g, after sampling 8 times:

Sampling in Bayes nets

- Prior sampling
- Rejection sampling
- Likelihood weighting
- Gibbs sampling

Prior sampling

Prior sampling

Prior sampling

- For $i=1,2, \ldots, n$ (in topological order)
- Sample X_{i} from $\mathrm{P}\left(X_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Return $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)=P\left(x_{1}, \ldots, x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{P S}\left(x_{1}, \ldots, x_{n}\right)$
- Estimate from N samples is $Q_{N}\left(x_{1}, \ldots, x_{n}\right)=N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$
- Then $\lim _{N \rightarrow \infty} Q_{N}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$

$$
\begin{aligned}
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

- I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:

$$
\begin{array}{rrrr}
c, & \neg s, & r, & w \\
c, & s, & r, & w \\
\neg c, & s, & r, & \neg w \\
c, & \neg s, & r, & w \\
\neg c, & \neg s, & \neg r & w
\end{array}
$$

- If we want to know $P(W)$
- We have counts <w:4, $\neg \mathrm{w}: 1>$
- Normalize to get $P(W)=<\mathrm{w}: 0.8, \neg \mathrm{w}: 0.2>$
- This will get closer to the true distribution with more samples

Rejection sampling

Rejection sampling

- A simple application of prior sampling for estimating conditional probabilities
- Let's say we want $P(C \mid r, w)=\alpha P(C, r, w)$
- For these counts, samples with $\neg r$ or $\neg w$ are not relevant
- So count the C outcomes for samples with r, w and reject all other samples
- This is called rejection sampling
- It is also consistent for conditional probabilities (i.e., correct in the limit)

Rejection sampling

- Input: evidence $e_{1}, . ., e_{k}$
- For $\mathrm{i}=1,2, \ldots, \mathrm{n}$
- Sample X_{i} from $\mathrm{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- If x_{i} not consistent with evidence
- Reject: Return, and no sample is generated in this cycle
- Return ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$)

Car Insurance: $P($ PropertyCost $\mid e)$

Likelihood weighting

Likelihood weighting

- Problem with rejection sampling:
- If evidence is unlikely, rejects lots of samples
- Evidence not exploited as you sample
- Consider P(Shape|Color=blue)
pyramid, green

pyramid, red
sphere, blue
cube, red
sphere, green

- Idea: fix evidence variables, sample the rest
- Problem: sample distribution not consistent!
- Solution: weight each sample by probability of evidence variables given parents

pyramid, blue pyramid, blue sphere, blue cube, blue sphere, blue

Likelihood Weighting

Likelihood weighting

Likelihood weighting is consistent

- Sampling distribution if \mathbf{Z} sampled and \mathbf{e} fixed evidence

$$
S_{W s}(\mathbf{z}, \mathbf{e})=\prod_{j} P\left(z_{j} \mid \text { parents }\left(Z_{j}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{k} P\left(e_{k} \mid \operatorname{parents}\left(E_{k}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{W S}(\mathbf{z}, \mathbf{e}) \cdot w(\mathbf{z}, \mathbf{e}) & =\prod_{j} P\left(z_{j} \mid \operatorname{parents}\left(Z_{j}\right)\right) \prod_{k} P\left(e_{k} \mid \operatorname{parents}\left(E_{k}\right)\right) \\
& =P(\mathbf{z}, \mathbf{e})
\end{aligned}
$$

- Likelihood weighting is an example of importance sampling
- Would like to estimate some quantity based on samples from P
- $\quad P$ is hard to sample from, so use Q instead
- Weight each sample x by $P(x) / Q(x)$

Car Insurance: $P($ PropertyCost $\mid \boldsymbol{e})$

Likelihood weighting

- Likelihood weighting is good
- All samples are used
- The values of downstream variables are influenced by upstream evidence

- Likelihood weighting still has weaknesses
- The values of upstream variables are unaffected by downstream evidence
- E.g., suppose evidence is a video of a traffic accident
- With evidence in k leaf nodes, weights will be $O\left(2^{-k}\right)$
- With high probability, one lucky sample will have much larger weight than the others, dominating the result
- We would like each variable to "see" all the evidence!

Quiz

- Suppose I perform a random walk on a graph, following the arcs out of a node uniformly at random. In the infinite limit, what fraction of time do I spend at each node?
- Consider these two examples:

Markov Chain Monte Carlo

- MCMC (Markov chain Monte Carlo) is a family of randomized algorithms for approximating some quantity of interest over a very large state space
- Markov chain = a sequence of randomly chosen states ("random walk"), where each state is chosen conditioned on the previous state
- Monte Carlo = a very expensive city in Monaco with a famous casino

Markov Chain Monte Carlo

- MCMC (Markov chain Monte Carlo) is a family of randomized algorithms for approximating some quantity of interest over a very large state space
- Markov chain = a sequence of randomly chosen states ("random walk"), where each state is chosen conditioned on the previous state
- Monte Carlo = a very expensive city in Monaco with a famous casino
- Monte Carlo = an algorithm (usually based on sampling) that has some probability of producing an incorrect answer
- MCMC = wander around for a bit, average what you see

Gibbs sampling

- A particular kind of MCMC
- States are complete assignments to all variables
- (Cf local search: closely related to simulated annealing!)
- Evidence variables remain fixed, other variables change
- To generate the next state, pick a variable and sample a value for it conditioned on all the other variables: $X_{i}^{\prime} \sim P\left(X_{i} \mid x_{1}, . ., X_{i-1}, x_{i+1}, ., x_{n}\right)$
- Will tend to move towards states of higher probability, but can go down too
- In a Bayes net, $P\left(X_{i} \mid x_{1}, ., x_{i-1}, x_{i+1}, . ., x_{n}\right)=P\left(X_{i} \mid\right.$ markov_blanket $\left.\left(X_{i}\right)\right)$
- Theorem: Gibbs sampling is consistent*

Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair

Advantages of MCMC

Samples soon begin to reflect all the evidence in the network

Eventually they are being drawn from the true posterior!

Car Insurance: $P($ PropertyCost $\mid \boldsymbol{e})$

Number of samples

Car Insurance: $P($ PropertyCost $\mid \boldsymbol{e})$

Gibbs sampling algorithm

- Repeat many times
- Sample a non-evidence variable X_{i} from

$$
\begin{aligned}
& P\left(X_{i} \mid x_{1}, . ., x_{i-1}, x_{i+1}, . ., x_{n}\right)=P\left(X_{i} \mid \text { markov_blanket }\left(X_{i}\right)\right) \\
& \quad=\alpha P\left(X_{i} \mid \text { parents }\left(X_{i}\right)\right) \prod_{j} P\left(y_{j} \mid \text { parents }\left(Y_{j}\right)\right)
\end{aligned}
$$

Gibbs Sampling Example: $P(S \mid r)$

- Step 1: Fix evidence
- $R=$ true

- Step 2: Initialize other variables
- Randomly

- Step 3: Repeat
- Choose a non-evidence variable X
- Resample X from $P(X \mid$ markov_blanket $(X))$

Markov chain given s, w

Gibbs sampling and MCMC in practice

- The most commonly used method for large Bayes nets
- See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.
- Can be compiled to run very fast
- Eliminate all data structure references, just multiply and sample
- ~100 million samples per second on a laptop
- Can run asynchronously in parallel (one processor per variable)
- Many cognitive scientists suggest the brain runs on MCMC

Consistency of Gibbs (see AIMA 13.4.2 for details)

- Suppose we run it for a long time and predict the probability of reaching any given state at time $t: \pi_{t}\left(x_{1}, \ldots, x_{n}\right)$ or $\pi_{t}(\underline{\mathbf{x}})$
- Each Gibbs sampling step (pick a variable, resample its value) applied to a state \underline{x} has a probability $k\left(\underline{\mathbf{x}}^{\prime} \mid \underline{\mathbf{x}}\right)$ of reaching a next state $\underline{\mathrm{x}}^{\prime}$
- So $\pi_{t+1}\left(\underline{\mathbf{x}}^{\prime}\right)=\sum_{\underline{\underline{x}}} k\left(\underline{\mathbf{x}}^{\prime} \mid \underline{\mathbf{x}}\right) \pi_{t}(\underline{\mathbf{x}})$ or, in matrix/vector form $\pi_{t+1}=K \pi_{t}$
- When the process is in equilibrium $\pi_{t+1}=\pi_{t}=\pi$ so $K \pi=\pi$
- This has a unique* solution $\pi=\mathrm{P}\left(x_{1}, \ldots, x_{n} \mid e_{1}, \ldots, e_{k}\right)$
- * Markov chain must be ergodic, i.e., completely connected and aperiodic
- Satisfied if all probabilities are bounded away from 0 and 1
- So for large enough t the next sample will be drawn from the true posterior
- "Large enough" depends on CPTs in the Bayes net; takes longer if nearly deterministic

Bayes Net Sampling Summary

- Prior Sampling P :
- Generate complete samples from $P\left(x_{1}, \ldots, x_{n}\right)$

- Likelihood Weighting $P(Q \mid e)$:
- Weight samples by how well they predict e

- Rejection Sampling $P(Q \mid e)$:
- Reject samples that don't match e

- Gibbs sampling $P(Q \mid e)$:
- Wander around in e space
- Average what you see

