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§ Suppose we have a biased coin that comes up heads with some 
unknown probability p; how can we use it to produce random 
bits with probabilities of exactly 0.5 for 0 and 1?



Quick Warm-Up

§ Suppose we have a biased coin that comes up heads with some 
unknown probability p; how can we use it to produce random 
bits with probabilities of exactly 0.5 for 0 and 1?

§ Answer (von Neumann):
§ Flip coin twice, repeat until the outcomes are different
§ HT = 0, TH = 1, each has probability p(1-p)
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Sampling

§ Basic idea
§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?
§ Often very fast to get a decent 

approximate answer

§ The algorithms are very simple and 
general (easy to apply to fancy models)

§ They require very little memory (O(n))
§ They can be applied to large models, 

whereas exact algorithms blow up



Example

§ Suppose you have two agent programs A and B for Monopoly
§ What is the probability that A wins?

§ Method 1: 
§ Let s be a sequence of dice rolls and Chance and Community Chest cards
§ Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
§ Probability that A wins is
§ Problem: infinitely many sequences s !

§ Method 2:
§ Sample N sequences from P(s) , play N games (maybe 100) 
§ Probability that A wins is roughly 1/N åi V(si)   i.e., fraction of wins in the sample

ås P(s) V(s) 



Sampling basics: discrete (categorical) distribution

§ To simulate a biased d-sided coin P(x):

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
associating each outcome xi with a P(xi)-
sized sub-interval of [0,1)

§ Example

§ If random() returns u = 0.83, 
then the sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

0.0 £ u < 0.6, ® C=red
0.6 £ u < 0.7, ® C=green  
0.7 £ u < 1.0, ® C=blue    

0.6 0.30.1



Sampling in Bayes nets

§ Prior sampling

§ Rejection sampling

§ Likelihood weighting

§ Gibbs sampling



Prior sampling

Shape Color
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Prior sampling

§ For i=1, 2, …, n (in topological order)

§ Sample Xi from P(Xi | parents(Xi))

§ Return (x1, x2, …, xn)



Prior Sampling

§ This process generates samples with probability:
SPS(x1,…,xn) = 

…i.e. the BN’s joint probability

§ Let the number of samples of an event be NPS(x1,…,xn)
§ Estimate from N samples is QN(x1,…,xn) = NPS(x1,…,xn)/N
§ Then limN®¥ QN(x1,…,xn)  =  limN®¥ NPS(x1,…,xn)/N

= SPS(x1,…,xn) 
= P(x1,…,xn) 

§ I.e., the sampling procedure is consistent

Õi P(xi | parents(Xi)) = P(x1,…,xn) 



Example

§ We’ll get a bunch of samples from the BN:
c, ¬s,    r,    w
c,    s,    r,    w

¬c,    s,    r, ¬w
c, ¬s,    r,    w

¬c, ¬s, ¬r,    w

§ If we want to know P(W)
§ We have counts <w:4, ¬w:1>
§ Normalize to get P(W) = <w:0.8, ¬w:0.2>
§ This will get closer to the true distribution with more samples

S R

W

C



Rejection sampling



   c, ¬s,    r,    w
    c,    s, ¬r
 ¬c,    s,    r, ¬w
    c, ¬s, ¬r
 ¬c, ¬s,    r,    w

Rejection sampling

§ A simple application of prior sampling for 
estimating conditional probabilities
§ Let’s say we want P(C| r, w) = α P(C, r, w)
§ For these counts, samples with ¬r or ¬w are not 

relevant
§ So count the C outcomes for samples with r, w

and reject all other samples 

§ This is called rejection sampling
§ It is also consistent for conditional probabilities 

(i.e., correct in the limit)

S R

W

C



Rejection sampling
§ Input: evidence e1,..,ek
§ For i=1, 2, …, n

§ Sample Xi from P(Xi | parents(Xi))

§ If xi not consistent with evidence
§ Reject: Return, and no sample is generated in this cycle

§ Return (x1, x2, …, xn)



Car Insurance: P(PropertyCost | e)
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Likelihood weighting



§ Idea: fix evidence variables, sample the rest
§ Problem: sample distribution not consistent!
§ Solution: weight each sample by probability of 

evidence variables given parents

Likelihood weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P(Shape|Color=blue)

Shape ColorShape Color

pyramid,  green
 pyramid,  red
 sphere,     blue
 cube,         red
sphere,      green

pyramid,  blue
 pyramid,  blue
 sphere,     blue
 cube,         blue
 sphere,      blue



Likelihood Weighting

c 0.5
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c s 0.1
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¬s 0.5
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w = 1.0 x 0.1 x 0.99c r



Likelihood weighting
§ Input: evidence e1,..,ek
§ w = 1.0
§ for i=1, 2, …, n

§ if Xi is an evidence variable
§ xi = observed valuei for Xi

§ Set w = w * P(xi | parents(Xi))

§ else
§ Sample xi from P(Xi | parents(Xi))

§ return (x1, x2, …, xn), w



Likelihood weighting is consistent
§ Sampling distribution if Z sampled and e fixed evidence

SWS(z,e) = Õj P(zj | parents(Zj)) 

§ Now, samples have weights

w(z,e) = Õk P(ek | parents(Ek)) 

§ Together, weighted sampling distribution is consistent

SWS(z,e) × w(z,e) =  Õj P(zj | parents(Zj)) Õk P(ek | parents(Ek))
= P(z,e) 

§ Likelihood weighting is an example of importance sampling
§ Would like to estimate some quantity based on samples from P
§ P is hard to sample from, so use Q instead
§ Weight each sample x by P(x)/Q(x)

Cloudy

R

C

S

W
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Likelihood weighting

§ Likelihood weighting is good
§ All samples are used
§ The values of downstream variables are 

influenced by upstream evidence

§ Likelihood weighting still has weaknesses
§ The values of upstream variables are unaffected by 

downstream evidence
§ E.g., suppose evidence is a video of a traffic accident

§ With evidence in k leaf nodes, weights will be O(2-k)
§ With high probability, one lucky sample will have much 

larger weight than the others, dominating the result

§ We would like each variable to “see” all the 
evidence!



Quiz

§ Suppose I perform a random walk on a graph, following the arcs 
out of a node uniformly at random. In the infinite limit, what 
fraction of time do I spend at each node? 
§ Consider these two examples:

a

cb

a

cb



Markov Chain Monte Carlo

§ MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a 
very large state space
§ Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
§ Monte Carlo = a very expensive city in Monaco with a famous casino





Markov Chain Monte Carlo

§ MCMC (Markov chain Monte Carlo) is a family of randomized 
algorithms for approximating some quantity of interest over a 
very large state space
§ Markov chain = a sequence of randomly chosen states (“random walk”), 

where each state is chosen conditioned on the previous state
§ Monte Carlo = a very expensive city in Monaco with a famous casino
§ Monte Carlo = an algorithm (usually based on sampling) that has some 

probability of producing an incorrect answer

§ MCMC = wander around for a bit, average what you see



Gibbs sampling

§ A particular kind of MCMC
§ States are complete assignments to all variables

§ (Cf local search: closely related to simulated annealing!)

§ Evidence variables remain fixed, other variables change
§ To generate the next state, pick a variable and sample a value for it 

conditioned on all the other variables:   Xi’ ~ P(Xi | x1,..,xi-1,xi+1,..,xn)
§ Will tend to move towards states of higher probability, but can go down too
§ In a Bayes net, P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

§ Theorem: Gibbs sampling is consistent*
§ Provided all Gibbs distributions are bounded away from 0 and 1 and variable selection is fair



Advantages of MCMC

Samples soon begin to 
reflect all the evidence 
in the network

Eventually they are 
being drawn from the 
true posterior!
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Gibbs sampling algorithm

§ Repeat many times
§ Sample a non-evidence variable  Xi from
P(Xi | x1,..,xi-1,xi+1,..,xn) = P(Xi | markov_blanket(Xi))

=   α P(Xi | parents (Xi))  Õj P(yj | parents(Yj))

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X



§ Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | r)

§ Step 1: Fix evidence
§ R = true

§ Step 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P(X | markov_blanket(X))

S r

W

C

S r

W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

S r
W

C

Sample S ~ P(S | c, r, ¬w) Sample C ~ P(C | s, r) Sample W ~ P(W | s, r)



Markov chain given s, w

c r

¬c ¬r¬c r

c ¬r

0.6296 0.0926

0.27780.2222

0.3856

0.3922

0.1078 0.8683

0.0238

0.4074

0.1164

0.4762



Gibbs sampling and MCMC in practice

§ The most commonly used method for large Bayes nets
§ See, e.g., BUGS, JAGS, STAN, infer.net, BLOG, etc.

§ Can be compiled to run very fast
§ Eliminate all data structure references, just multiply and sample
§ ~100 million samples per second on a laptop

§ Can run asynchronously in parallel (one processor per variable)
§ Many cognitive scientists suggest the brain runs on MCMC



Consistency of Gibbs (see AIMA 13.4.2 for details)
§ Suppose we run it for a long time and predict the probability of reaching any 

given state at time t: πt(x1,...,xn) or πt(x) 
§ Each Gibbs sampling step (pick a variable, resample its value) applied to a 

state x has a probability k(x’ | x) of reaching a next state x’
§ So πt+1(x’) = åx k(x’ | x) πt(x) or, in matrix/vector form πt+1 = Kπt

§ When the process is in equilibrium πt+1 = πt = π so Kπ = π
§ This has a unique* solution π = P(x1,...,xn | e1,...,ek)

§ * Markov chain must be ergodic, i.e., completely connected and aperiodic
§ Satisfied if all probabilities are bounded away from 0 and 1

§ So for large enough t the next sample will be drawn from the true posterior
§ “Large enough” depends on CPTs in the Bayes net; takes longer if nearly deterministic



§ Rejection Sampling P(Q | e) :
§ Reject samples that don’t match e

§ Gibbs sampling P(Q | e) :
§ Wander around in e space
§ Average what you see

Bayes Net Sampling Summary
§ Prior Sampling P :

§ Generate complete samples from P(x1,…,xn)

§ Likelihood Weighting P(Q | e) :
§ Weight samples by how well they predict e


