CS 188: Artificial Intelligence

Markov Models

Slides mostly from Stuart Russell and Dawn Song University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
 - Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

Value of X at a given time is called the state (usually discrete, finite)

 $P(X_0) \qquad P(X_t \mid X_{t-1})$

- The *transition model* $P(X_t | X_{t-1})$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
 - X_{t+1} is independent of X₀,..., X_{t-1} given X_t
 - This is a *first-order* Markov model (a *k*th-order model allows dependencies on *k* earlier steps)
- Joint distribution $P(X_0, \dots, X_T) = P(X_0) \prod_t P(X_t \mid X_{t-1})$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
 - Directed acyclic graph, joint = product of conditionals
- No:
 - Infinitely many variables (unless we truncate)
 - Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

 $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P(X_t = k | X_{t-1} = k \pm 1) = 0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.

-4 -3 -2 -1

- Questions:
 - How far does it get as a function of t?
 - Expected distance is O(vt)
 - Does it get back to 0 or can it go off for ever and not come back?
 - In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

We call ourselves *Homo sapiens*—man the wise—because our **intelligence** is so important to us. For thousands of years, we have tried to understand *how we think*; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
 - Unigram (zero-order): P(Word_t = i)
 - "logical are as are confusion a may right tries agent goal the was . . ."
 - Bigram (first-order): P(Word_t = i | Word_{t-1}=j)
 - "systems are very similar computational approach would be represented . . ."
 - Trigram (second-order): P(Word_t = i | Word_{t-1} = j, Word_{t-2} = k)
 - "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
 - With probability p, choose an outgoing link at random
 - With probability (1-*p*), choose an arbitrary new page
- Question: What is the *stationary distribution* over pages?
 - I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

- States {rain, sun}
- Initial distribution P(X₀)

P(X ₀)	
sun	rain
0.5	0.5

Transition model P(X_t | X_{t-1})

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Two new ways of representing the same CPT

Weather prediction

Time 0: <0.5,0.5>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 1?
 - $P(X_1) = \sum_{x_0} P(X_1, X_0 = x_0)$

$$= \sum_{x_0} P(X_0 = x_0) P(X_1 | X_0 = x_0)$$

■ = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Weather prediction, contd.

Time 1: <0.6,0.4>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 2?
 - $P(X_2) = \sum_{x_1} P(X_2, X_1 = x_1)$

$$= \sum_{x_1} P(X_1 = x_1) P(X_2 \mid X_1 = x_1)$$

■ = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Weather prediction, contd.

Time 2: <0.66,0.34>

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 3?
 - $P(X_3) = \sum_{x_2} P(X_3, X_2 = x_2)$

$$= \sum_{x_2} P(X_2 = x_2) P(X_3 \mid X_2 = x_2)$$

■ = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Forward algorithm (simple form)

- Iterate this update starting at t=0
 - This is called a *recursive* update: $P_t = g(P_{t-1}) = g(g(g(g(...P_0))))$

And the same thing in linear algebra

- What is the weather like at time 2?
 - $P(X_2) = 0.6 < 0.9, 0.1 > + 0.4 < 0.3, 0.7 > = < 0.66, 0.34 >$
- In matrix-vector form:
 - $P(X_2) = \begin{pmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{pmatrix} \begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.66 \\ 0.34 \end{pmatrix}$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

I.e., multiply by T^T, transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{\infty} = P_{\infty+1} = T^T P_{\infty}$
- Solving for P_∞ in the example:

 $\begin{pmatrix} 0.9 \ 0.3 \\ 0.1 \ 0.7 \end{pmatrix} \begin{pmatrix} p \\ 1-p \end{pmatrix} = \begin{pmatrix} p \\ 1-p \end{pmatrix}$ 0.9p + 0.3(1-p) = p

p = 0.75

Stationary distribution is <0.75,0.25> regardless of starting distribution

Consistency of Gibbs (see AIMA 13.4.2 for details)

- Gibbs sampling works because it uses a Markov chain where:
 - States are assignments of values to variables in the Bayes' net
 - Transition probabilities are easy to calculate only use "local" information
 - Stationary distribution over states equals the desired conditional probability distribution
- Key fact: whenever we modify X_i, ratio of transition probabilities for transitioning to X_i = x_i versus X_i = x_i' is equal to the ratio:
- $P(x_1 x_2 \dots x_{i-1} x_i x_{i+1} \dots x_n | \boldsymbol{e})$ versus $P(x_1 x_2 \dots x_{i-1} x_i' x_{i+1} \dots x_n | \boldsymbol{e})$

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
 - Underlying Markov chain over states X
 - You observe evidence *E* at each time step
 - X_t is a single discrete variable; E_t may be continuous and may consist of several variables

Example: Weather HMM

HMM as probability model

- Joint distribution for Markov model: $P(X_0, ..., X_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1})$
- Joint distribution for hidden Markov model:

 $P(X_0, E_0, X_1, E_1, \dots, X_T, E_T) = P(X_0) \prod_{t=1:T} P(X_t \mid X_{t-1}) P(E_t \mid X_t)$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

 $X_{a:b} = X_a, X_{a+1}, ..., X_b$

Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options
- Robot tracking:
 - Observations are range readings (continuous)
 - States are positions on a map (continuous)
- Molecular biology:
 - Observations are nucleotides ACGT
 - States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- **Smoothing**: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: arg max_{x1:t} P(x_{1:t} | e_{1:t})
 - speech recognition, decoding with a noisy channel

Inference tasks

Smoothing: $P(X_k | e_{1:t})$, k<t $(X_1 \rightarrow X_2 \rightarrow X_3 \rightarrow X_4)$ $(e_1 \ e_2 \ e_3 \ e_4)$

Explanation: P(X_{1:t} | e_{1:t})

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1:t} = P(X_t | e_{1:t})$ over time
- We start with f_0 in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations; >1,000,000 papers on Google Scholar

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

Lighter grey: was **possible** to get the reading, but **less likely** (required 1 mistake)

t=2

1

Prob

0

t=4

t=5

Aim: devise a *recursive filtering* algorithm of the form

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$\begin{pmatrix} X_1 \\ \downarrow \\ \downarrow \\ e_1 \\ e_2 \\ e_3 \\ e_4 \\$$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

- $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$
 - $= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$
- $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$

$$= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$$

Given by HMM Pre-computed Given by HMM

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$(X_1) \rightarrow (X_2) \rightarrow (X_3) \rightarrow (X_4)$$

$$(e_1) \qquad (e_2) \qquad (e_3) \qquad (e_4)$$

• $P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$

 $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$

LHS: $P(X_{t+1}, e_{1:t}, e_{t+1})/P(e_{1:t}, e_{t+1})$ RHS: $\alpha P(e_{t+1}, X_{t+1}, e_{1:t})/P(X_{t+1}, e_{1:t}) * P(X_{t+1}, e_{1:t})/P(e_{1:t})$ RHS: $\alpha P(e_{t+1}, X_{t+1}, e_{1:t}) / P(e_{1:t})$ $\alpha = P(e_{1:t}) / P(e_{1:t}, e_{t+1})$ which is the same for all x_{t+1}

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$$

Why does $P(e_{t+1}|X_{t+1}, e_{1:t}) = P(e_{t+1}|X_{t+1})$? Variables are independent of non-descendants given parents

If I know X_4 , nothing else will help be better predict e_4

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

$$= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t})$$

$$= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$$

$$P(A|B)P(B) = P(A,B)$$

$$\sum_{x_t} P(X_{t+1} | x_t, e_{1:t}) P(x_t | e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t | e_{1:t}) = P(X_{t+1} | e_{1:t})$$

- Aim: devise a *recursive filtering* algorithm of the form
 - $P(X_{t+1}|e_{1:t+1}) = g(e_{t+1}, P(X_t|e_{1:t}))$

$$\begin{pmatrix} X_1 \\ \downarrow \\ \downarrow \\ e_1 \\ e_2 \\ e_3 \\ e_4 \\$$

•
$$P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1})$$

- $= \alpha P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t})$
 - $= \alpha P(e_{t+1}|X_{t+1}) P(X_{t+1}|e_{1:t})$
 - $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t, e_{1:t})$
 - $= \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(x_t | e_{1:t}) P(X_{t+1} | x_t)$ Given by HMM Pre-computed Given by HMM

Variables are independent of nondescendants given parents

"Forward" algorithm

60

AWGGOMG

AM

- Time and space costs are *constant*, independent of *t*
- O(|X|²) is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix *T*, observation matrix *O*_t
 - Observation matrix has state likelihoods for *E_t* along diagonal
 - E.g., for $U_1 = \text{true}, O_1 = \begin{pmatrix} 0.2 & 0 \\ 0 & 0.9 \end{pmatrix}$
- Filtering algorithm becomes
 - $f_{1:t+1} = \alpha \ O_{t+1} T^{\mathsf{T}} f_{1:t}$

X _{t-1}	P(X _t X _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar

Most Likely Explanation

Inference tasks

- **Filtering**: $P(X_t | e_{1:t})$
 - belief state—input to the decision process of a rational agent
- **Prediction**: $P(X_{t+k} | e_{1:t})$ for k > 0
 - evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P(X_k | e_{1:t})$ for $0 \le k < t$
 - better estimate of past states, essential for learning
- Most likely explanation: $\arg \max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
 - speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- arg $\max_{x_{1:t}} P(x_{1:t} | e_{1:t})$
- = arg $\max_{x_{1:t}} \alpha P(x_{1:t}, e_{1:t})$
- = arg max_{$x_{1:t}} P(x_{1:t}, e_{1:t})$ </sub>

- = arg max_{x1:t} $P(x_0) \prod_t P(x_t \mid x_{t-1}) P(e_t \mid x_t)$
- = arg max_{x_{1:t}} log [$P(x_0) \prod_t P(x_t | x_{t-1}) P(e_t | x_t)$]
- = arg $\max_{x_{1:t}} \log P(x_0) + \sum_t \log P(x_t \mid x_{t-1}) + \log P(e_t \mid x_t)$

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t | x_{t-1}) P(e_t | x_t)$ (arcs to initial states have weight $P(x_0)$)
- The *product* of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, *Viterbi algorithm* computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum) For each state at time *t*, keep track of the *total probability of all paths* to it

 $f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) \\ = \alpha P(e_{t+1}|X_{t+1}) \sum_{X_t} P(X_{t+1}|X_t) f_{1:t}$

Viterbi Algorithm (max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

 $m_{1:t+1} = VITERBI(m_{1:t}, e_{t+1})$ = $P(e_{t+1}|X_{t+1}) \max_{X_t} P(X_{t+1}|X_t) m_{1:t}$

Viterbi algorithm contd.

W _{t-1}	P(W _t W _{t-1})	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Viterbi in negative log space

W _{t-1}	$P(W_t W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

W _t	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

argmax of product of probabilities

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially breadth-first graph search What about A*?