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Uncertainty and Time

§ Often, we want to reason about a sequence of observations 
where the state of the underlying system is changing
§ Speech recognition

§ Robot localization

§ User attention

§ Medical monitoring

§ Global climate

§ Need to introduce time into our models



Markov Models (aka Markov chain/process)

§ Value of X at a given time is called the state (usually discrete, finite)

§ The transition model P(Xt | Xt-1) specifies how the state evolves over time 
§ Stationarity assumption: transition probabilities are the same at all times
§ Markov assumption: “future is independent of the past given the present”

§ Xt+1 is independent of X0,…, Xt-1 given Xt
§ This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

§ Joint distribution P(X0,…, XT) = P(X0) Õt P(Xt | Xt-1)

X1X0 X2 X3

P(X0) P(Xt | Xt-1)



Quiz: are Markov models a special case of Bayes nets?

§ Yes and no!
§ Yes:

§ Directed acyclic graph, joint = product of conditionals
§ No:

§ Infinitely many variables (unless we truncate)
§ Repetition of transition model not part of standard Bayes net syntax



Example: Random walk in one dimension

§ State: location on the unbounded integer line
§ Initial probability: starts at 0
§ Transition model: P(Xt = k| Xt-1= k±1) = 0.5 
§ Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
§ Questions: 

§ How far does it get as a function of t?
§ Expected distance is O(√t)

§ Does it get back to 0 or can it go off for ever and not come back?
§ In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
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Example: n-gram models

§ State: word at position t in text (can also build letter n-grams)
§ Transition model (probabilities come from empirical frequencies):

§ Unigram (zero-order): P(Wordt = i) 
§ “logical are as are confusion a may right tries agent goal the was . . .”

§ Bigram (first-order): P(Wordt = i | Wordt-1= j)
§ “systems are very similar computational approach would be represented . . .”

§ Trigram (second-order): P(Wordt = i | Wordt-1= j, Wordt-2= k) 
§ “planning and scheduling are integrated the success of naive bayes model is . . .”

§ Applications: text classification, spam detection, author identification, 
language classification, speech recognition

We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us. 
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can 
perceive, understand, predict, and manipulate a world far larger and more complicated than itself. ….



Example: Web browsing

§ State: URL visited at step t
§ Transition model:

§ With probability p, choose an outgoing link at random
§ With probability (1-p), choose an arbitrary new page

§ Question: What is the stationary distribution over pages?
§ I.e., if the process runs forever, what fraction of time does it spend in 

any given page?
§ Application: Google page rank

8



Example: Weather

§ States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7

§ Initial distribution P(X0) 

§ Transition model P(Xt | Xt-1)

P(X0)
sun rain

0.5 0.5



Weather prediction

§ Time 0: <0.5,0.5>

§ What is the weather like at time 1?
§ P(X1) = åx0

P(X1,X0=x0)
§ = åx0

P(X0=x0) P(X1| X0=x0)
§ = 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

§ Time 1: <0.6,0.4>

§ What is the weather like at time 2?
§ P(X2) = åx1

P(X2,X1=x1)
§ = åx1

P(X1=x1) P(X2| X1=x1)
§ = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

§ Time 2: <0.66,0.34>

§ What is the weather like at time 3?
§ P(X3) = åx2

P(X3,X2=x2)
§ = åx2

P(X2=x2) P(X3| X2=x2)
§ = 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7



X1X0 X2 X3

Forward algorithm (simple form)

§ What is the state at time t?
§ P(Xt) = åxt-1

P(Xt,Xt-1=xt-1)
§ = åxt-1

P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)
§ Iterate this update starting at t=0

§ This is called a recursive update: Pt = g(Pt-1) = g(g(g(g( …P0)))) 

Probability from 
previous iteration

Transition model

P(X0) P(Xt | Xt-1)



And the same thing in linear algebra

§ What is the weather like at time 2?
§ P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

§ In matrix-vector form:

§ P(X2) = (         ) (    ) = (      )

§ I.e., multiply by TT, transpose of transition matrix

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7

0.9 0.3
0.1 0.7

0.6
0.4

0.66
0.34



Stationary Distributions

§ The limiting distribution is called the stationary distribution P¥
of the chain

§ It satisfies P¥ = P¥+1 = TT P¥
§ Solving for P¥ in the example:

( ) (  ) = (  )
0.9p + 0.3(1-p) = p
p = 0.75
Stationary distribution is <0.75,0.25> regardless of starting distribution

0.9 0.3
0.1 0.7

p
1-p

p
1-p



Consistency of Gibbs (see AIMA 13.4.2 for details)

§ Gibbs sampling works because it uses a Markov chain where:
§ States are assignments of values to variables in the Bayes’ net

§ Transition probabilities are easy to calculate – only use “local” information

§ Stationary distribution over states equals the desired conditional probability 
distribution

§ Key fact: whenever we modify Xi, ratio of transition probabilities for 
transitioning to Xi = xi versus Xi = xi’ is equal to the ratio:

§ P(x1 x2… xi-1 xi xi+1… xn |e) versus P(x1 x2… xi-1 xi’ xi+1… xn |e)



Hidden Markov Models



Hidden Markov Models

§ Usually the true state is not observed directly

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe evidence E at each time step
§ Xt is a single discrete variable; Et may be continuous 

and may consist of several variables

X5X1X0 X2 X3

E1 E2 E3 E5



Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

§ An HMM is defined by:
§ Initial distribution:   P(X0)
§ Transition model:    P(Xt| Xt-1)
§ Sensor model:          P(Et| Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



HMM as probability model

§ Joint distribution for Markov model: P(X0,…, XT) = P(X0) Õt=1:T P(Xt | Xt-1)

§ Joint distribution for hidden Markov model:

P(X0,E0,X1,E1,…, XT,ET) = P(X0) Õt=1:T P(Xt | Xt-1) P(Et | Xt) 
§ Future states are independent of the past given the present
§ Current evidence is independent of everything else given the current state
§ Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Useful notation: 

Xa:b = Xa , Xa+1, …, Xb



Real HMM Examples

§ Speech recognition HMMs:
§ Observations are acoustic signals (continuous valued)
§ States are specific positions in specific words (so, tens of thousands)

§ Machine translation HMMs:
§ Observations are words (tens of thousands)
§ States are translation options

§ Robot tracking:
§ Observations are range readings (continuous)
§ States are positions on a map (continuous)

§ Molecular biology:
§ Observations are nucleotides ACGT
§ States are coding/non-coding/start/stop/splice-site etc.



Inference tasks

§ Filtering: P(Xt|e1:t)
§ belief state—input to the decision process of a rational agent 

§ Prediction: P(Xt+k|e1:t) for k > 0 
§ evaluation of possible action sequences; like filtering without the evidence 

§ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
§ better estimate of past states, essential for learning 

§ Most likely explanation: arg maxx1:t P(x1:t | e1:t) 
§ speech recognition, decoding with a noisy channel 



Inference tasks

Filtering: P(Xt|e1:t)
X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)



Filtering / Monitoring

§ Filtering, or monitoring, or state estimation, is the task of 
maintaining the distribution f1:t = P(Xt|e1:t) over time

§ We start with f0 in an initial setting, usually uniform

§ Filtering is a fundamental task in engineering and science

§ The Kalman filter (continuous variables, linear dynamics, 
Gaussian noise) was invented in 1960 and used for trajectory 
estimation in the Apollo program; core ideas used by Gauss for 
planetary observations; >1,000,000 papers on Google Scholar



Example: Robot Localization

t=0
Sensor model: four bits for wall/no-wall in each direction, 

never more than 1 mistake
Transition model: action may fail with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

Lighter grey: was possible to get the reading, 

but less likely (required 1 mistake)

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)
§ = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

Apply Bayes’ rule

Apply conditional independence

PredictUpdateNormalize

Condition on Xt

Apply conditional 
independence



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)
§ = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

32Pre-computed Given by HMMGiven by HMM



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)

LHS: P(Xt+1,e1:t, et+1)/P(e1:t, et+1)
RHS: α P(et+1, Xt+1, e1:t)/P(Xt+1, e1:t) * P(Xt+1, e1:t)/ P(e1:t)
RHS: α P(et+1, Xt+1, e1:t) / P(e1:t)
α = P(e1:t) / P(e1:t, et+1) which is the same for all xt+1



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)

Why does P(et+1|Xt+1, e1:t) = P(et+1|Xt+1) ?
Variables are independent of non-descendants given parents
If I know X4, nothing else will help be better predict e4



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)

åxt
 P(Xt+1| xt, e1:t) P(xt | e1:t) = åxt

 P(Xt+1, xt | e1:t) = P(Xt+1| e1:t) 

P(A|B)P(B) = P(A,B) Marginalization over xt



X2

e1

X1 X3 X4

e2 e3 e4

Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
§ = α P(et+1|Xt+1, e1:t) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) P(Xt+1| e1:t)
§ = α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt, e1:t)
§ = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

36Pre-computed Given by HMMGiven by HMM

Variables are 
independent of non-
descendants given 
parents



“Forward” algorithm

§ P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt P(xt | e1:t) P(Xt+1| xt)

§ f1:t+1 = FORWARD(f1:t , et+1) ;  f1:t is P(Xt|e1:t)
§ Cost per time step: O(|X|2) where |X| is the number of states
§ Time and space costs are constant, independent of t
§ O(|X|2) is infeasible for models with many state variables
§ We get to invent really cool approximate filtering algorithms

PredictUpdateNormalize

Pre-computed (scalar 
for each term in sum)

Given by HMM (vector for 
each term in sum)Given by HMM (vector)

*for t=0, note e1:0 is empty



And the same thing in linear algebra

§ Transition matrix T, observation matrix Ot

§ Observation matrix has state likelihoods for Et along diagonal

§ E.g., for U1 = true, O1 = (         ) 

§ Filtering algorithm becomes
§ f1:t+1 = α Ot+1TT f1:t

Xt-1 P(Xt|Xt-1)
sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

0.2   0
 0   0.9



Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain)  = 0.5

0.6
 0.4

f(sun) = 0.25
f(rain) = 0.75

0.45
0.55

f(sun) = 0.154
f(rain) = 0.846

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict predict

update update



Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Video of Demo Pacman – Sonar



Most Likely Explanation



Inference tasks

§ Filtering: P(Xt|e1:t)
§ belief state—input to the decision process of a rational agent 

§ Prediction: P(Xt+k|e1:t) for k > 0 
§ evaluation of possible action sequences; like filtering without the evidence 

§ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
§ better estimate of past states, essential for learning 

§ Most likely explanation: arg maxx1:t P(x1:t | e1:t) 
§ speech recognition, decoding with a noisy channel 



Most likely explanation = most probable path

§ State trellis: graph of states and transitions over time

§ arg maxx1:tP(x1:t | e1:t)

§ = arg maxx1:tα P(x1:t , e1:t)

§ = arg maxx1:t P(x1:t , e1:t) 

§ = arg maxx1:t P(x0) Õt P(xt | xt-1) P(et | xt)
§ = arg maxx1:t log [ P(x0) Õt P(xt | xt-1) P(et | xt) ]

§ = arg maxx1:t log P(x0) + å t log P(xt | xt-1) + log P(et | xt) 

sun

rain

sun

rain

sun

rain

sun

rain

X0                   X1                 …                      XT

All given by HMM

Alternative form



Most likely explanation = most probable path

§ State trellis: graph of states and transitions over time

§ Each arc represents some transition xt-1 ® xt
§ Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0) )

§ The product of weights on a path is proportional to that state sequence’s probability 

§ Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

sun

rain

sun

rain

sun

rain

sun

rain

X0                   X1                 …                      XT



Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of 
the total probability of all paths to it

sun

rain

sun

rain

sun

rain

sun

rain

X0                   X1                 …                      XT

Viterbi Algorithm (max)
For each state at time t, keep track of     
the maximum probability of any path to it

f1:t+1 = FORWARD(f1:t , et+1)
    = α P(et+1|Xt+1) åxt P(Xt+1| xt) f1:t 

m1:t+1 = VITERBI(m1:t , et+1)
    = P(et+1|Xt+1) maxxt P(Xt+1| xt) m1:t 



Viterbi algorithm contd.

Time complexity?
O(|X|2 T)

X0                   X1                 X2                      XT

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1
U1=true          U2=false            U3=true

0.5

0.5

0.18

0.63

0.09

0.06

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X| T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)



Viterbi in negative log space

argmax of product of probabilities 
= argmin of sum of negative log probabilities 
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially breadth-first graph search
What about A*?


