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Uncertainty and Time

= Often, we want to reason about a sequence of observations
where the state of the underlying system is changing

= Speech recognition

Robot localization

User attention

Medical monitoring

Global climate

= Need to introduce time into our models



Markov Models (aka Markov chain/process)

= Value of X at a given time is called the state (usually discrete, finite)

(=)@ -~

P(Xp) P(X¢ | X¢1)

The transition model P(X; | X;.1) specifies how the state evolves over time
Stationarity assumption: transition probabilities are the same at all times
Markov assumption: “future is independent of the past given the present”

" Xt41 isindependent of X, ..., X;_1 given X;
= This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

Joint distribution P(X,..., X7) = P(Xo) | 11 PO | Xiq)



Quiz: are Markov models a special case of Bayes nets?

= Yes and no!
=" Yes:

= Directed acyclic graph, joint = product of conditionals
= No:
" Infinitely many variables (unless we truncate)

= Repetition of transition model not part of standard Bayes net syntax



Example: Random walk in one dimension

< ] fo?"f 1 >

| |
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State: location on the unbounded integer line

Initial probability: starts at O

Transition model: P(X; = k| X;.q= k+1) =0.5

Applications: particle motion in crystals, stock prices, gambling, genetics, etc.

Questions:

= How far does it get as a function of t?
= Expected distance is O(Vt)

= Does it get back to O or can it go off for ever and not come back?
* |n 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733



Example: n-gram models

We call ourselves Homo sapiens—man the wise—because our intelligence is so important to us.
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can
perceive, understand, predict, and manipulate a world far larger and more complicated than itself. ....

= State: word at position t in text (can also build letter n-grams)

= Transition model (probabilities come from empirical frequencies):
= Unigram (zero-order): P(Word; = i)
= “|logical are as are confusion a may right tries agent goal the was . . .”
= Bigram (first-order): P(Word; =i | Word;_1=j)
= “systems are very similar computational approach would be represented . ..”
= Trigram (second-order): P(Word; =i | Word;_1=j, Word,_,= k)
= “planning and scheduling are integrated the success of naive bayes modelis...”
= Applications: text classification, spam detection, author identification,
language classification, speech recognition



Example: Web browsing

State: URL visited at step t

Transition model:

= With probability p, choose an outgoing link at random

= With probability (1-p), choose an arbitrary new page
Question: What is the stationary distribution over pages?

= |.e., if the process runs forever, what fraction of time does it spend in
any given page?

Application: Google page rank




= States {rain, sun}

= |nitial distribution P(X{)

P(Xo)

sun

rain

0.5

0.5

= Transition model P(X; | X;.q)

X1 P(X:1X¢.1)
sun rain

sun 0.9 0.1

rain 0.3 0.7

Example: Weather

Two new ways of representing the same CPT

0.9
03 ’ 05
@ @ sun v sun
)
rain A rain
0.7

0.7
0.1



Weather prediction

= Time 0: <0.5,0.5> Yo | POGIY)
sun rain

sun 0.9 0.1

rain 0.3 0.7

= \What is the weather like at time 17
= P(Xl) = ZXO P(X]./XO:XO)
u = ZXO P(onxo) P(X1| X0=XO)
m = 0.5<0.9,0.1> + 0.5<0.3,0.7> =<0.6,0.4>




Weather prediction, contd.

= Time 1: <0.6,0.4> Yo | POGIXe)
sun rain

sun 0.9 0.1

rain 0.3 0.7

= \What is the weather like at time 27
= P(Xz) = le P(X2,X1=X1)
. = 2x, P(X1=x1) POX3 | X1=x4)
u = 0.6<0.9,0.1> + 0.4<0.3,0.7> =<0.66,0.34>




Weather prediction, contd.

» Time 2: <0.66,0.34> Xea | POGIXea)

sun rain
sun 0.9 0.1
rain 0.3 0.7

= \What is the weather like at time 37
. = 2y, P(X3=x;) P(X3] X3=x3)
u = 0.66<0.9,0.1> + 0.34<0.3,0.7> =<0.696,0.304>




Forward algorithm (simple form)

=)o) -+

P(Xp) P(Xt | Xt-1)

Probability from
previous iteration

= \What is the state at time t? [ N ]
Transition model
" P(Xy) = 2y, | P(Xp Xea=x,.

. = th—l P(Xr.1=Xe1) P(X] Xt-lzxt-l)/

" |terate this update starting at t=0

» This is called a recursive update: P, = g(P;.1) = g(g(g(g( ...P;))))



And the same thing in linear algebra

= \What is the weather like at time 27
" P(X,)=0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>
=" |n matrix-vector form:

= p0) = (2392) (55) = (552 )

X1 P(X:1X¢.1)
sun rain
0.9 0.1

rain 0.3 0.7

= |.e., multiply by T, transpose of transition matrix




Stationary Distributions

" The limiting distribution is called the stationary distribution P,
of the chain
" |t satisfiesP_ =P ,,=T P,
= Solving for P_, in the example:
(5353) (2,) = (%)
090 +0.3(1-p)=p

p=0.75
Stationary distribution is <0.75,0.25> regardless of starting distribution




Consistency of Gibbs (see AIMA 13.4.2 for details)

= Gibbs sampling works because it uses a Markov chain where:
= States are assignments of values to variables in the Bayes’ net

= Transition probabilities are easy to calculate — only use “local” information

= Stationary distribution over states equals the desired conditional probability
distribution

= Key fact: whenever we modify X, ratio of transition probabilities for
transitioning to X; = x; versus X; = x;” is equal to the ratio:

" P(Xy %50 Xi g Xi Xipqoe X, | €) VErsSus P(X; X5... Xi g X" Xiyq... X, | €)



Hidden Markov Models




Hidden Markov Models

= Usually the true state is not observed directly

= Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

= X:is asingle discrete variable; £; may be continuous
and may consist of several variables

OaOaOaOainl




Example: Weather HMM
= An HMM is defined by:

Wi, P(W,|W,.,)

sun rain

sun 0.9 0.1

rain 0.3 0.7
Weather, Weather,

Umbrella, 4 Umbrella;

= |nitial distribution: P(X,)
* Transition model: P(X;| X,.,)

= Sensor model: P(E.| X,)
Weather,,;
W, P(U|W,)
true false

0.8

0.1

sun 0.2
rain 0.9
A+l



HMM as probability model

= Joint distribution for Markov model: P(X,..., X7) = P(X() thl:T P(X¢ | Xt-1)
Joint distribution for hidden Markov model:

P(X0,EsX1,E1yeeey X1E7) = PXg) | Licq.7 POX; | X;q) PES | X)

Future states are independent of the past given the present

Current evidence is independent of everything else given the current state
Are evidence variables independent of each other?

@ _ -k Useful notation:

Xab = Xg, Xg+1s - Xp



Real HMM Examples

Speech recognition HMMs:
= QObservations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

= QObservations are words (tens of thousands)
= States are translation options

Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= QObservations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



Inference tasks

* Filtering: P(X;|e1.;)
= pelief state—input to the decision process of a rational agent
" Prediction: P(X,,|e;.;) for k>0
= evaluation of possible action sequences; like filtering without the evidence
= Smoothing: P(X,|e,.,) forO<k<t
= better estimate of past states, essential for learning
" Most likely explanation: arg max, P(xy.; | €;.)

= speech recognition, decoding with a noisy channel



Inference tasks

Filtering: P(X.|e.) Prediction: P(X...|ey.:)
D @-OHE) D @-@OHD)
ONORONO ONORO
Smoothing: P(X,|e;.;), k<t Explanation: P(X,.|ey.t)
DO G

ONONORCO @@



Filtering / Monitoring

Filtering, or monitoring, or state estimation, is the task of
maintaining the distribution f1.; = P(X;|e4.;) over time

We start with f, in an initial setting, usually uniform

Filtering is a fundamental task in engineering and science

The Kalman filter (continuous variables, linear dynamics,
Gaussian noise) was invented in 1960 and used for trajectory
estimation in the Apollo program; core ideas used by Gauss for
planetary observations; >1,000,000 papers on Google Scholar




Example: Robot Localization

Example from
Michael Pfeiffer

| N
Prob 0 1

t=0

Sensor model: four bits for wall/no-wall in each direction,
never more than 1 mistake

Transition model: action may fail with small prob.



Example: Robot Localization

| 00 |
Prob 0 1

t=1
Lighter grey: was possible to get the reading,

but less likely (required 1 mistake)



Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

" P(Xts1le1:441) = 9lepr, PIX¢le1) )
l Apply Bayes’ rule

u 'D(Xt+1 | el:t+1) = ’D(Xt+1 | el:t: et+1) Apply conditional independence [
- = P(et+1 |Xt+1, elzt) t+1| el Condition on X;

0 = o P(et+1 |Xt+1) 'D(Xt+1 | e. t) Apply cond|t|ona|

independence
M = P(et+ ) Z P €1. t) P(Xt+1| Xer €1 t)
N Normalize (e 1 | Update Predict (Xt+1 | Xt)




Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

" P(Xtr1l€1:041) = 9lersq, P(Xi|€14) ) @ @ @ ]
u P(Xt+1 | el:t+1) = 'D(Xt+1 | el:ti et+1) @ @ @ @

- = P(€esy1| X1, €1.0) PXrn | €124)

¥ = o P(egsq | Xiv1) P(Xpa1 | €124)

0 =a P(e; 1| Xu1) th P(x; | €1.) P(Xea | Xer €14)
o =a P(e 1| X:i1) th Px;: | e1.e) P(Xps1| X;)

m by HMM ] | Pre-computed?l(—)iven by HMM ]




Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

" P(Xtr1l€1:041) = 9lersq, P(Xi|€14) ) @ @ @ ]
u P(Xt+1 | el:t+1) = 'D(Xt+1 | el:ti et+1) @ @ @ @

= = P(et+1 |Xt+1; el:t) ’D(Xt+1| el:t)

LHS: P(X;11,€1.t) €141)/P(€1.4) €141)

RHS: a P(ey.1, Xii1, el:t)/w * M/ P(e;.;)

RHS: a P(ey.1, Xii1, €14) / Pl€124)
a = P(e,,) / P(e, e,q) which is the same for all x,,,



Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

" P(Xpr1l€1:041) = 9(€410, P(Xi|€14) ) @ @ @ @
. () (&) (@) (9

= = P(et+1 |Xt+1; el:t) ’D(Xt+1| el:t)
O = P(et+1 |Xt+1) ’D(Xt+1| el:t)

Why does P(e.; | X1, €1.4) = Plersq | Xina) ?
Variables are independent of non-descendants given parents
If | know X,, nothing else will help be better predict e,



Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form

" P(Xpr1l€1:041) = 9(€410, P(Xi|€14) ) @ @ @ @
. () (&) (@) (9

M = P(et+1 |Xt+1) ’D(Xt+1| el:t)
0 = o P(e;q| X;.q) th P(x; | €1.1) PXeur | Xp €1:¢)
[ P(AIB)P(B) = P(A B) Marginalization over x; ]

th P(Xes1| Xp €1.¢) P(X; | €14) = th P(Xis1, X: | €14) = P(Xiar| €1:4)



Filtering algorithm

= Aim: devise a recursive filtering algorithm of the form
" P(Xes1leq:001) = gl P(Xileq:) )

" P(Xi1]€1:001) = PXpu1 | €124y €141)

= A P(epq | Xear, €1:¢) P(Xea | €124)
= a P(egq | Xiua) PXeaa | €1:4)

= a P(eq | Xea) th P(x; | €1.¢) P(Xi1| Xps €124)

D @-H®)
@ ® @ E

Variables are

=a P(et+1 Xt+1) th P(Xt | el:t) P(Xt+1| Xt) independent of non-

[ Given byﬁ

Pre-computed i [ Given bym

descendants given
parents



“Forward” algorithm

[ Pre -computed (scalar Given by HMM (vector for
L Given by HMM (vector) for each term wnl] each term in sum)

" P(Xi1l€1.001) a'D(et+1|Xt+1) Z P(Xt | e1.1) P(Xeia | X;)

|NormaI|ze| i Update I i Predict I

® f1.ts1 = FORWARD(f1.¢, €441) 5 fr.0iS P(X¢|€1.4) *for t=0, note e,.9 is empty
= Cost per time step: O(|X|?) where | X| is the number of states

" Time and space costs are constant, independent of t m@ N\
= O(|X|?) is infeasible for models with many state variables °© ©

= We get to invent really cool approximate filtering algorithms
JAWESOM

€



And the same thing in linear algebra

" Transition matrix T, observation matrix O,

" Observation matrix has state likelihoods for E, along diagonal

02 0
" E.g., for U, =true, O, = ( 0 0.9

= Filtering algorithm becomes
- -fl:t+1 = Ot+1TT-f1:t

)

Xi-1 P(X¢|X:.1)

sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U.|W,)

sun

rain

true

false

0.8
0.1




Example: Weather HMM

0.6 0.45
predict 0.4 predict ~~ 0.55
lupdate l update
W1 P(W,|W,,)
f(sun) = 0.5 f(sun) = 0.25 f(sun) = 0.154 sun | rain
f(rain) =0.5 f(rain) =0.75 f(rain) = 0.846 wun | oo o1
rain 0.3 0.7
W, P(U.|W,)
true false
sun 0.2 0.8
rain 0.9 0.1




Pacman — Hunting Invisible Ghosts with Sonar

S

) 21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar




Most Likely Explanation

o K

v
—
|

,’




Inference tasks

* Filtering: P(X;|e1.;)
= pelief state—input to the decision process of a rational agent
" Prediction: P(X,,|e;.;) for k>0

= evaluation of possible action sequences; like filtering without the evidence
= Smoothing: P(X,|e,.,) forO<k<t

m better estimate of past states, essential for learnin

" Most likely explanation: arg max, P(xy.; | €;.)

= speech recognition, decoding with a noisy channel




Most likely explanation = most probable path

= State trellis: graph of states and transitions over time

< sun sun sun sun

rain rain rain rain

Xo Xq X7

" arg max, Plx;.| eg

| =
arg max, o P(Xl;tf el:t) All given by HMM ]
" =argmax,, . P(Xl;tr el:t)

" =arg max,,, P(xo) Ht P(xs | x¢-1) Ples | x¢) _
Alternative form ]
" =argmax,, . log [ P(xo) Ht P(x; | xp.q) Pe; | x;) | %

= =arg max,, logP(xo) + 2. ;log P(x; | x.;) + log P(e; | x;)




Most likely explanation = most probable path

State trellis: graph of states and transitions over time

< sun sun sun sun

rain rain rain rain

Xo Xq X7

Each arc represents some transition x;.q — X;
Each arc has weight P(x; | x¢.q) P(et | x;) (arcs to initial states have weight P(x,) )
The product of weights on a path is proportional to that state sequence’s probability

Forward algorithm computes sums of paths, Viterbi algorithm computes best paths



Forward / Viterbi algorithms

< =

rain

Xo

sun

rain

X1

Forward Algorithm (sum)

For each state at time t, keep track of
the total probability of all paths to it

fi...1 = FORWARD(f; . , €411)

- a P(et+1|Xt+1) th P(Xt+1 | Xt) f1:t

sun

rain

sun

rain
AT

Viterbi Algorithm (max)

For each state at time t, keep track of
the maximum probability of any path to it

My = VITERBI(M 4, €441)
= P(ete1|X1) max,, P(Xeq| X;) My



Viterbi algorithm contd.

0.5

-~

Time complexity?
O(|X]2T)

X1 X

Space complexity?
o(IX] T)

0.0136080

0.0138495

AT
Us=true

Number of paths?

o(1x]7)

W, P(W,|W,,)
sun rain
sun 0.9 0.1
rain 0.3 0.7
W, P(U,|W,)
true false
sun 0.2 0.8
rain 0.9 0.1




Viterbi in negative log space

Wi, P(W,|W,.)
sun rain
1.0 sun sun
sun 0.9 0.1
S
rain 0.3 0.7
1.0 rain ‘( rain
W, P(UW,)
G true false
sun 0.2 0.8
rain 0.9 0.1

argmax of product of probabilities
= argmin of sum of negative log probabilities
= minimum-cost path

Viterbi is essentially breadth-first graph search
What about A*?



