CS 188: Artificial Intelligence Markov Models

Slides mostly from Stuart Russell and Dawn Song
University of California, Berkeley

Uncertainty and Time

- Often, we want to reason about a sequence of observations where the state of the underlying system is changing
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Global climate
- Need to introduce time into our models

Markov Models (aka Markov chain/process)

- Value of X at a given time is called the state (usually discrete, finite)

- The transition model $P\left(X_{t} \mid X_{t-1}\right)$ specifies how the state evolves over time
- Stationarity assumption: transition probabilities are the same at all times
- Markov assumption: "future is independent of the past given the present"
- x_{t+1} is independent of x_{0}, \ldots, x_{t-1} given X_{t}
- This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)
- Joint distribution $P\left(X_{0}, \ldots, X_{T}\right)=P\left(X_{0}\right) \prod_{t} P\left(X_{t} \mid X_{t-1}\right)$

Quiz: are Markov models a special case of Bayes nets?

- Yes and no!
- Yes:
- Directed acyclic graph, joint = product of conditionals
- No:
- Infinitely many variables (unless we truncate)
- Repetition of transition model not part of standard Bayes net syntax

Example: Random walk in one dimension

- State: location on the unbounded integer line
- Initial probability: starts at 0
- Transition model: $P\left(X_{t}=k \mid X_{t-1}=k \pm 1\right)=0.5$
- Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
- Questions:
- How far does it get as a function of t ?
- Expected distance is $O(V t)$
- Does it get back to 0 or can it go off for ever and not come back?
- In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733

Example: n-gram models

We call ourselves Homo sapiens-man the wise-because our intelligence is so important to us.
For thousands of years, we have tried to understand how we think; that is, how a mere handful of matter can perceive, understand, predict, and manipulate a world far larger and more complicated than itself.

- State: word at position t in text (can also build letter n-grams)
- Transition model (probabilities come from empirical frequencies):
- Unigram (zero-order): $P\left(\right.$ Word $\left._{t}=i\right)$
- "logical are as are confusion a may right tries agent goal the was ..."
- Bigram (first-order): $P\left(\right.$ Word $_{t}=i \mid$ Word $\left._{t-1}=j\right)$
- "systems are very similar computational approach would be represented . . ."
- Trigram (second-order): $P\left(\right.$ Word $_{t}=i \mid$ Word $_{t-1}=j$, Word $\left._{t-2}=k\right)$
- "planning and scheduling are integrated the success of naive bayes model is . . ."
- Applications: text classification, spam detection, author identification, language classification, speech recognition

Example: Web browsing

- State: URL visited at step t
- Transition model:
- With probability p, choose an outgoing link at random
- With probability (1-p), choose an arbitrary new page
- Question: What is the stationary distribution over pages?
- I.e., if the process runs forever, what fraction of time does it spend in any given page?
- Application: Google page rank

Example: Weather

- States $\{r a i n, ~ s u n\}$
- Initial distribution $P\left(X_{0}\right)$

$\mathbf{P}\left(\mathbf{X}_{\mathbf{0}}\right)$	
sun	rain
0.5	0.5

Two new ways of representing the same CPT

- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

Weather prediction

- Time 0: <0.5,0.5>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 1?
- $P\left(X_{1}\right)=\sum_{x_{0}} P\left(X_{1}, X_{0}=x_{0}\right)$

- $\quad=\sum_{x_{0}} P\left(X_{0}=x_{0}\right) P\left(X_{1} \mid X_{0}=x_{0}\right)$
- $\quad=0.5<0.9,0.1>+0.5<0.3,0.7>=<0.6,0.4>$

Weather prediction, contd.

- Time 1: <0.6,0.4>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 2?
- $P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2}, X_{1}=x_{1}\right)$
- $\quad=\sum_{x_{1}} P\left(X_{1}=x_{1}\right) P\left(X_{2} \mid X_{1}=x_{1}\right)$
- $\quad=0.6<0.9,0.1>+0.4<0.3,0.7>=<0.66,0.34>$

Weather prediction, contd.

- Time 2: <0.66,0.34>

$\mathbf{X}_{\mathrm{t}-1}$	$\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- What is the weather like at time 3?
- $P\left(X_{3}\right)=\sum_{x_{2}} P\left(X_{3}, X_{2}=x_{2}\right)$

- $\quad=\sum_{x_{2}} P\left(X_{2}=x_{2}\right) P\left(X_{3} \mid X_{2}=x_{2}\right)$
- $\quad=0.66<0.9,0.1>+0.34<0.3,0.7>=<0.696,0.304>$

Forward algorithm (simple form)

- What is the state at time t ?
- $P\left(X_{t}\right)=\sum_{x_{t-1}} P\left(X_{t} X_{t-1}=x_{t-1}\right.$
- $\quad=\sum_{x_{t-1}} P\left(X_{t-1}=x_{t-1}\right) P\left(X_{t} \mid X_{t-1}=x_{t-1}\right)$
- Iterate this update starting at $t=0$
- This is called a recursive update: $P_{t}=g\left(P_{t-1}\right)=g\left(g\left(g\left(g\left(\ldots P_{0}\right)\right)\right)\right)$

And the same thing in linear algebra

- What is the weather like at time 2?
- $P\left(X_{2}\right)=0.6<0.9,0.1>+0.4<0.3,0.7>=<0.66,0.34>$
- In matrix-vector form:
- $P\left(X_{2}\right)=\left(\begin{array}{l}0.99 .3 \\ 0.1\end{array} 0.7\right)\binom{0.6}{0.4}=\binom{0.66}{0.34}$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

- I.e., multiply by T^{\top}, transpose of transition matrix

Stationary Distributions

- The limiting distribution is called the stationary distribution P_{∞} of the chain
- It satisfies $P_{\infty}=P_{\infty+1}=T^{\top} P_{\infty}$
- Solving for P_{∞} in the example:
$\left(\begin{array}{ll}0.9 & 0.3 \\ 0.1 & 0.7\end{array}\right)\binom{p}{1-p}=\binom{p}{1-p}$
$0.9 p+0.3(1-p)=p$
$p=0.75$
Stationary distribution is $<0.75,0.25>$ regardless of starting distribution

Consistency of Gibbs (see AIMA 13.4.2 for details)

- Gibbs sampling works because it uses a Markov chain where:
- States are assignments of values to variables in the Bayes' net
- Transition probabilities are easy to calculate - only use "local" information
- Stationary distribution over states equals the desired conditional probability distribution
- Key fact: whenever we modify X_{i}, ratio of transition probabilities for transitioning to $X_{\mathrm{i}}=x_{\mathrm{i}}$ versus $X_{\mathrm{i}}=x_{\mathrm{i}}^{\prime}$ is equal to the ratio:
- $P\left(x_{1} x_{2} \ldots x_{i-1} x_{i} x_{i+1} \ldots x_{n} \mid e\right)$ versus $P\left(x_{1} x_{2} \ldots x_{i-1} x_{i}^{\prime} x_{i+1} \ldots x_{n} \mid e\right)$

Hidden Markov Models

Hidden Markov Models

- Usually the true state is not observed directly
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X
- You observe evidence E at each time step
- X_{t} is a single discrete variable; E_{t} may be continuous and may consist of several variables

Example: Weather HMM

- An HMM is defined by:

HMM as probability model

- Joint distribution for Markov model: $P\left(X_{0}, \ldots, X_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right)$
- Joint distribution for hidden Markov model:

$$
P\left(X_{0}, E_{0}, X_{1}, E_{1}, \ldots, X_{T}, E_{T}\right)=P\left(X_{0}\right) \prod_{t=1: T} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)
$$

- Future states are independent of the past given the present
- Current evidence is independent of everything else given the current state
- Are evidence variables independent of each other?

Useful notation:

$$
x_{a: b}=x_{a}, x_{a+1}, \ldots, x_{b}
$$

Real HMM Examples

- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options
- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)
- Molecular biology:
- Observations are nucleotides ACGT
- States are coding/non-coding/start/stop/splice-site etc.

Inference tasks

- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- belief state-input to the decision process of a rational agent
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- better estimate of past states, essential for learning
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- speech recognition, decoding with a noisy channel

Inference tasks

Filtering: $P\left(X_{t} \mid e_{1: t}\right)$

Smoothing: $P\left(X_{k} \mid e_{1: t}\right), k<t$

Prediction: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t+k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$

Explanation: $P\left(X_{1: t} \mid e_{1: t}\right)$

Filtering / Monitoring

- Filtering, or monitoring, or state estimation, is the task of maintaining the distribution $f_{1: t}=P\left(X_{t} \mid e_{1: t}\right)$ over time
- We start with f_{0} in an initial setting, usually uniform
- Filtering is a fundamental task in engineering and science
- The Kalman filter (continuous variables, linear dynamics, Gaussian noise) was invented in 1960 and used for trajectory estimation in the Apollo program; core ideas used by Gauss for planetary observations; $\geq 1,000,000$ papers on Google Scholar

Example: Robot Localization

Example from
Michael Pfeiffer

Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake
Transition model: action may fail with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely (required 1 mistake)

Example: Robot Localization

Prob

$t=2$

Example: Robot Localization

Prob $0 \quad t=3$

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob

$t=5$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$\left.=\alpha \overline{P\left(e_{t+1}\right.} \mid \underline{X_{t+1}, e_{1: t}}\right)$ Dh $n_{t+1} \mid e_{1}: \square \quad$ Condition on X_{t}
$=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
Apply conditional independence

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right)
$$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

LHS: $P\left(X_{t+1}, e_{1: t}, e_{t+1}\right) / P\left(e_{1: t}, e_{t+1}\right)$
RUS: $\alpha P\left(e_{t+1}, X_{t+1}, e_{1: t}\right) / P\left(X_{t+1,}, e_{1: t}\right) * P\left(X_{t+1,}, e_{1: t}\right) / P\left(e_{1: t}\right)$
RUS: $\alpha P\left(e_{t+1}, X_{t+1}, e_{1: t}\right) / P\left(e_{1: t}\right)$
$\alpha=P\left(e_{1: t}\right) / P\left(e_{1: t}, e_{t+1}\right)$ which is the same for all x_{t+1}

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)$

$$
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
$$

Why does $P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right)=P\left(e_{t+1} \mid X_{t+1}\right)$?
Variables are independent of non-descendants given parents If I know X_{4}, nothing else will help be better predict e_{4}

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right)$
- $\quad=\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$

$$
\begin{gathered}
=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~A}, \mathrm{~B}) \\
\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right)=\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right)=P\left(X_{t+1} \mid e_{1: t}\right)
\end{gathered}
$$

Filtering algorithm

- Aim: devise a recursive filtering algorithm of the form
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=g\left(e_{t+1}, P\left(X_{t} \mid e_{1: t}\right)\right)$
- $P\left(X_{t+1} \mid e_{1: t+1}\right)=P\left(X_{t+1} \mid e_{1: t}, e_{t+1}\right)$

$$
\begin{aligned}
& =\alpha P\left(e_{t+1} \mid X_{t+1}, e_{1: t}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) \\
& =\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(x_{t} \mid e_{1: t}\right) P\left(X_{t+1} \mid x_{t}\right) \text { Variables are } \\
& \text { independent of non- } \\
& \text { descendants given } \\
& \text { parents }
\end{aligned}
$$

"Forward" algorithm

- $f_{1: t+1}=\operatorname{FORWARD}\left(f_{1: t}, e_{t+1}\right) ; f_{1: t}$ is $P\left(X_{t} \mid e_{1: t}\right) *$ for $t=0$, note $e_{1: 0}$ is empty
- Cost per time step: $O\left(|X|^{2}\right)$ where $|X|$ is the number of states
- Time and space costs are constant, independent of t
- $O\left(|X|^{2}\right)$ is infeasible for models with many state variables
- We get to invent really cool approximate filtering algorithms

And the same thing in linear algebra

- Transition matrix T, observation matrix O_{t}
- Observation matrix has state likelihoods for E_{t} along diagonal
- E.g., for $U_{1}=$ true, $O_{1}=\left(\begin{array}{cc}0.2 & 0 \\ 0 & 0.9\end{array}\right)$
- Filtering algorithm becomes
- $f_{1: t+1}=\alpha O_{t+1} T^{\top} f_{1: t}$

X_{t-1}	$P\left(X_{t} \mid X_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Example: Weather HMM

\mathbf{W}_{t-1}	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Pacman - Hunting Invisible Ghosts with Sonar

[Demo: Pacman - Sonar - No Beliefs(L14D1)]

Video of Demo Pacman - Sonar

Most Likely Explanation

Inference tasks

- Filtering: $P\left(X_{t} \mid e_{1: t}\right)$
- belief state-input to the decision process of a rational agent
- Prediction: $P\left(X_{t+k} \mid e_{1: t}\right)$ for $k>0$
- evaluation of possible action sequences; like filtering without the evidence
- Smoothing: $P\left(X_{k} \mid e_{1: t}\right)$ for $0 \leq k<t$
- better estimate of past states, essential for learning
- Most likely explanation: $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- speech recognition, decoding with a noisy channel

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- $\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} \alpha P\left(x_{1: t}, e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} P\left(x_{1: t}, e_{1: t}\right)$
- $=\arg \max _{x_{1: t}} P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$
- $=\arg \max _{x_{1: t}} \log \left[P\left(x_{0}\right) \prod_{t} P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\right]$
- $=\arg \max _{x_{1: t}} \log P\left(x_{0}\right)+\sum_{t} \log P\left(x_{t} \mid x_{t-1}\right)+\log P\left(e_{t} \mid x_{t}\right)$

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ (arcs to initial states have weight $P\left(x_{0}\right)$)
- The product of weights on a path is proportional to that state sequence's probability
- Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

Forward / Viterbi algorithms

Forward Algorithm (sum)
For each state at time t, keep track of the total probability of all paths to it

$$
\begin{aligned}
& \boldsymbol{f}_{1: t+1}=\operatorname{FORWARD}\left(\boldsymbol{f}_{1: t}, e_{t+1}\right) \\
& \quad=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{f}_{1: t}
\end{aligned}
$$

Viterbi Algorithm (max)
For each state at time t, keep track of the maximum probability of any path to it

$$
\begin{aligned}
& \boldsymbol{m}_{1: t+1}=\operatorname{VITERBI}\left(\boldsymbol{m}_{1: t}, e_{t+1}\right) \\
& \quad=P\left(e_{t+1} \mid X_{t+1}\right) \max _{x_{t}} P\left(X_{t+1} \mid x_{t}\right) \boldsymbol{m}_{1: t}
\end{aligned}
$$

Viterbi algorithm contd.

x_{0}

W_{t-1}	$P\left(W_{t} \mid W_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

Time complexity? $\mathrm{O}\left(|\mathrm{X}|^{2} \mathrm{~T}\right)$

Space complexity?
O(|X| T)

Number of paths? $\mathrm{o}\left(|\mathrm{x}|^{\top}\right)$

Viterbi in negative log space

argmax of product of probabilities

W_{t-1}	$P\left(W_{t} \mid W_{t-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

= argmin of sum of negative log probabilities
$=$ minimum-cost path
Viterbi is essentially breadth-first graph search
What about A*?

