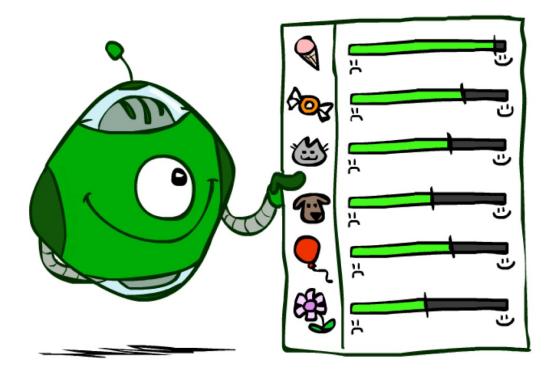


Slides from Stuart Russell and Peyrin Kao

University of California, Berkeley

Utilities



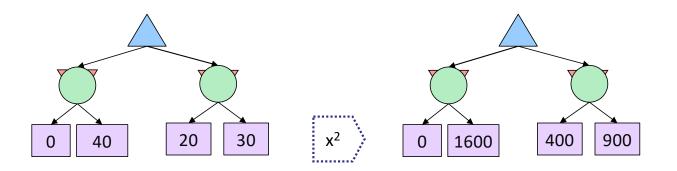
Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - Why don't we hard-wire behaviors?

Maximum Expected Utility

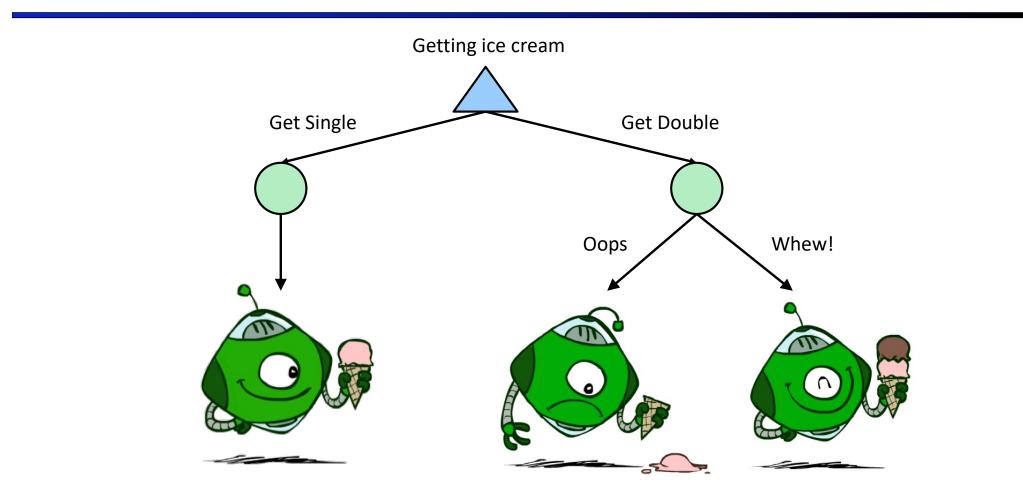
- Principle of maximum expected utility:
 - A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:
 - Where do utilities come from?
 - How do we know such utilities even exist?
 - How do we know that averaging makes sense?
 - What if our behavior (preferences) can't be described by utilities?

Utility magnitudes are meaningful

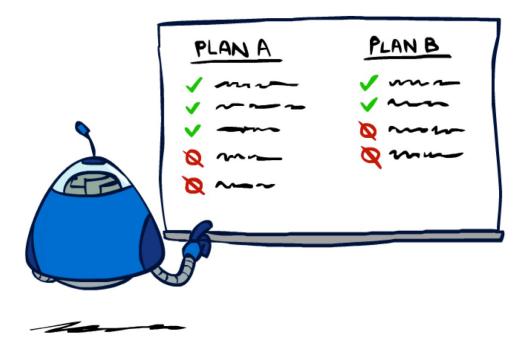


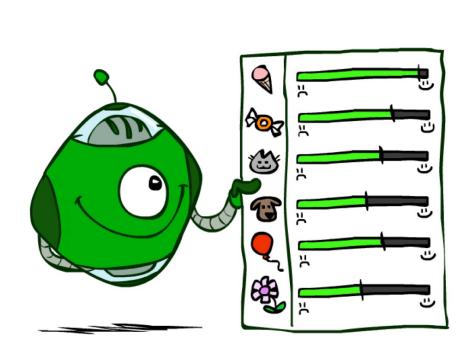
- For worst-case minimax reasoning, terminal value scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - The optimal decision is invariant under any *monotonic transformation*
- For average-case expectimax reasoning, we need *magnitudes* to be meaningful

Utilities: Uncertain Outcomes



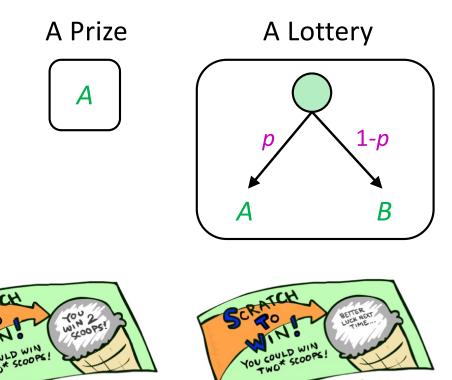
Deriving Utilities from Rational Preferences





Preferences

- An agent must have preferences among:
 - Prizes: *A*, *B*, etc.
 - Lotteries: situations with uncertain prizes
 - L = [p, A; (1-p), B]
- Notation:
 - Preference: A > B
 - Indifference: A ~ B

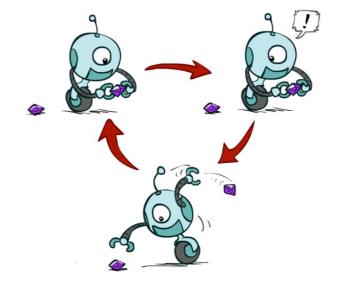


Rational Preferences

• We want some constraints on preferences before we call them rational, such as:

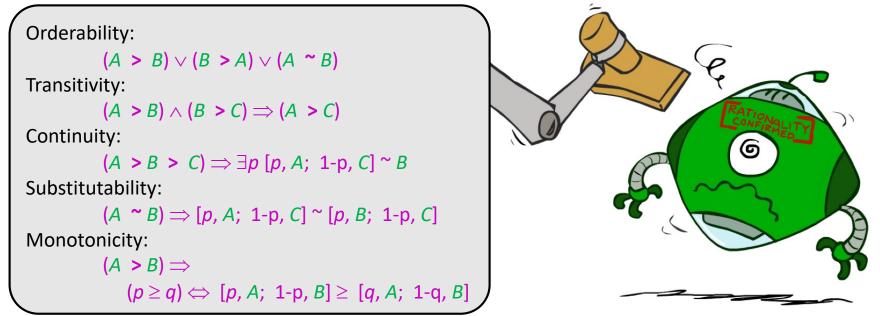
Axiom of Transitivity: $(A > B) \land (B > C) \Rightarrow (A > C)$

- Costs of irrationality:
- An agent with intransitive preferences can be induced to give away all of its money
 - If B > C, then an agent with C would pay (say) 1 cent to get B
 - If A > B, then an agent with B would pay (say) 1 cent to get A
 - If C > A, then an agent with A would pay (say) 1 cent to get C



Rational Preferences

The Axioms of Rationality



Theorem: Rational preferences imply behavior describable as maximization of expected utility

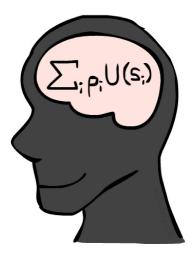
MEU Principle

- Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Given any preferences satisfying these constraints, there exists a real-valued function U such that:

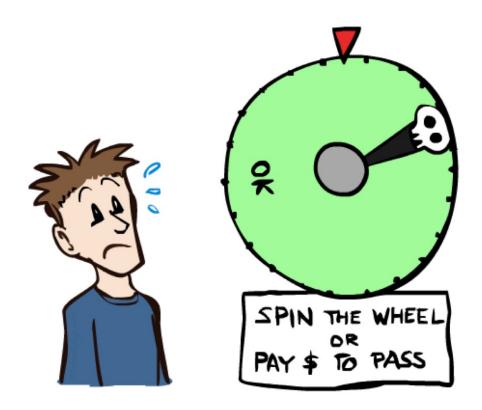
 $U(A) \geq U(B) \iff A \geq B$

$U([p_1,S_1; ...; p_n,S_n]) = p_1 U(S_1) + ... + p_n U(S_n)$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Optimal policy invariant under *positive affine transformation* U' = aU+b, a>0
- Maximum expected utility (MEU) principle:
 - Choose the action that maximizes expected utility
 - Note: rationality does *not* require representing or manipulating utilities and probabilities
 - E.g., a lookup table for perfect tic-tac-toe

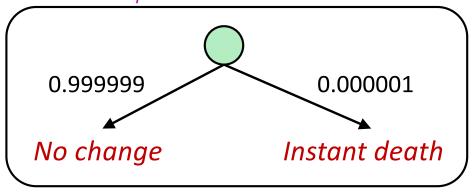


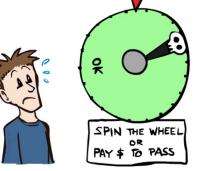
Human Utilities



Human Utilities

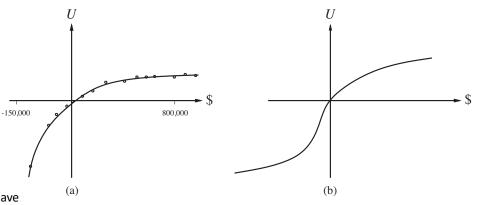
- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
 - We want to assign a utility to prize A
 - Compare a prize A to a standard lottery L_p between
 - "best possible prize" S_T with probability p
 - "worst possible catastrophe" S_{\perp} with probability 1-p
 - Adjust lottery probability p until indifference: A ~ Lp
 - Resulting p is a utility in [0,1]



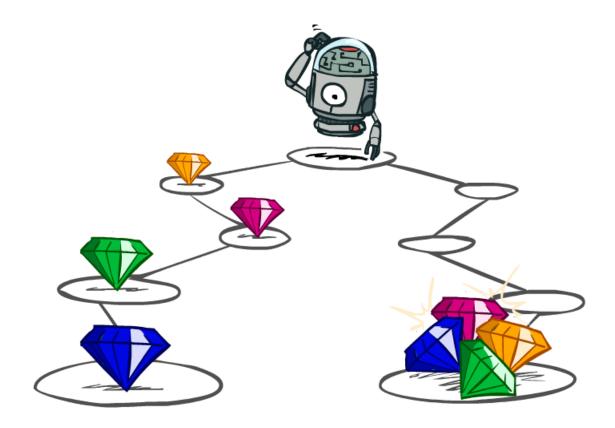


Money

- Money *does not* behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery L = [p, \$X; (1-p), \$Y]
 - The *expected monetary value* EMV(L) = pX + (1-p)Y
 - The utility is U(L) = pU(\$X) + (1-p)U(\$Y)
 - Typically, U(L) < U(EMV(L))
 - In this sense, people are risk-averse
 - E.g., how much would you pay for a lottery ticket L=[0.5, \$10,000; 0.5, \$0]?
 - The certainty equivalent of a lottery CE(L) is the cash amount such that CE(L) ~ L
 - The *insurance premium* is EMV(L) CE(L)
 - If people were risk-neutral, this would be zero!
 - Pay an insurance premium to get out of a lottery
 - House burns down, cybercriminals take your company's data, you die and leave your family with no income

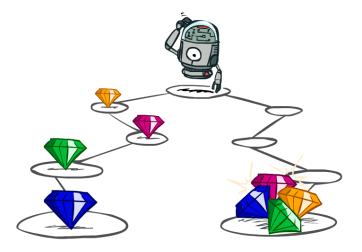


Utilities of Sequences



Utilities of Sequences

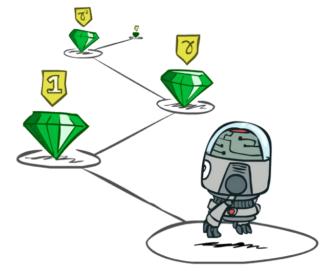
- What preferences should an agent have over prize sequences?
- More or less? [1, 2, 2] or [2, 3, 4]
- Now or later? [0, 0, 1] or [1, 0, 0]



Stationary Preferences

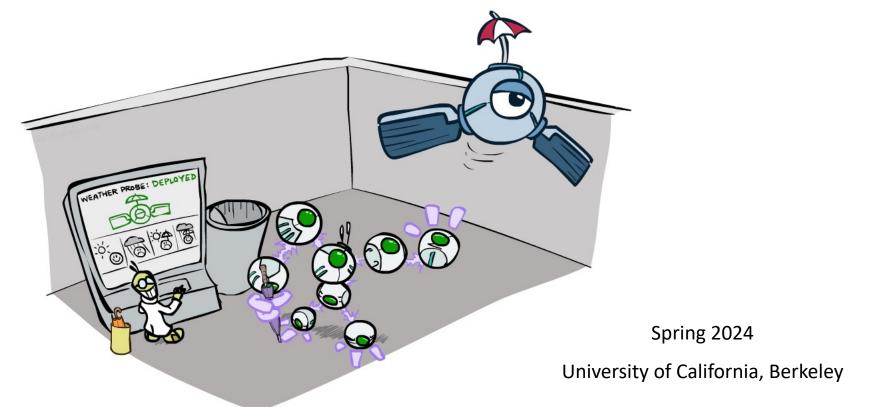
- Theorem: if we assume *stationary preferences*:
 [a₁, a₂, ...] > [b₁, b₂, ...] ⇔ [c, a₁, a₂, ...] > [c, b₁, b₂, ...] then there is only one way to define utilities:
 - Additive discounted utility:

 $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 + ...$ where $\gamma \in (0, 1]$ is the *discount factor*

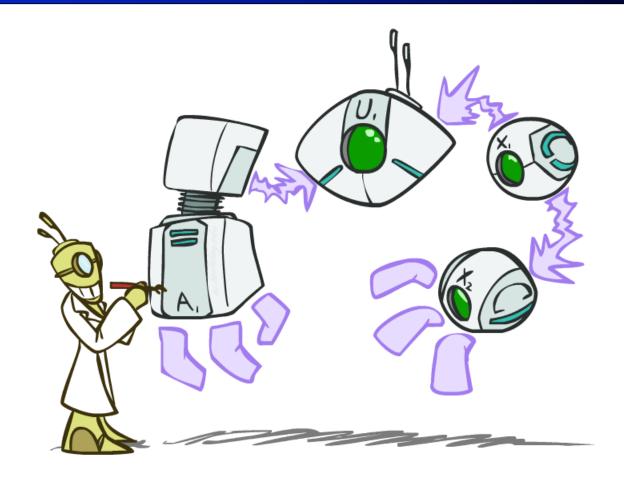


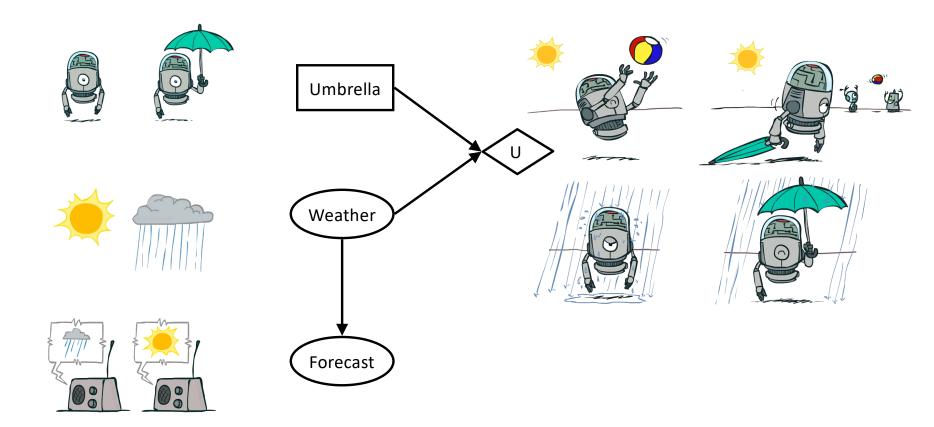
CS 188: Artificial Intelligence

Decision Networks and Value of Information

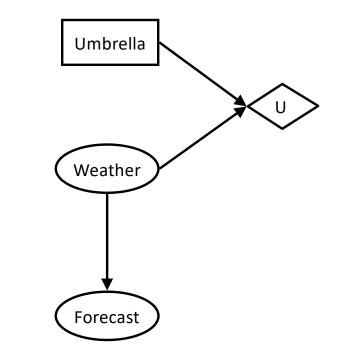


[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

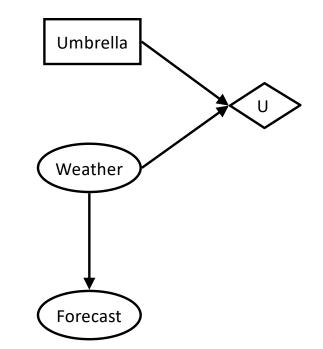


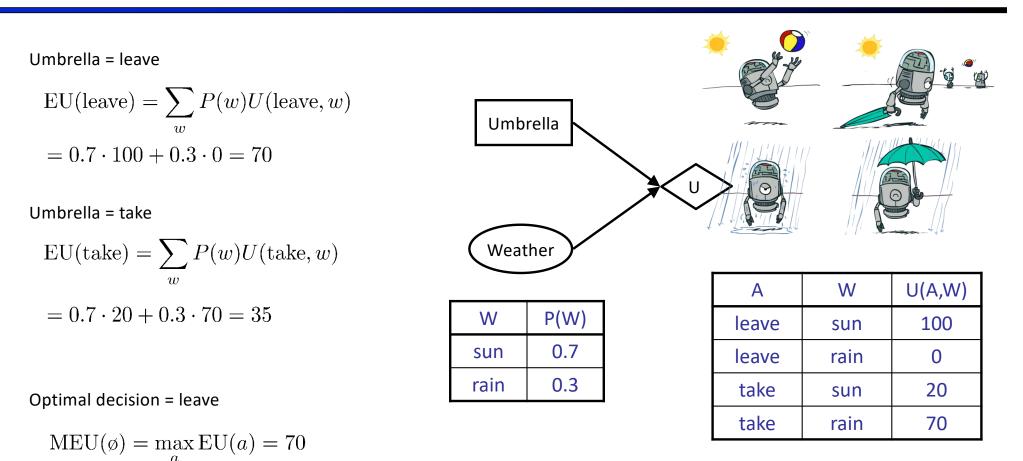


- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
 - Bayes nets with nodes for utility and actions
 - Lets us calculate the expected utility for each action
- New node types:
 - Chance nodes (just like BNs)
 - Actions (rectangles, cannot have parents, act as observed evidence)
 - Utility node (diamond, depends on action and chance nodes)



- Action selection
 - Instantiate all evidence
 - Set action node(s) each possible way
 - Calculate posterior for all parents of utility node, given the evidence
 - Calculate expected utility for each action
 - Choose maximizing action





Decision Networks: Notation

Umbrella = leave

$$EU(leave) = \sum_{w} P(w)U(leave, w)$$
$$= 0.7 \cdot 100 + 0.3 \cdot 0 = 70$$

Umbrella = take

$$EU(take) = \sum_{w} P(w)U(take, w)$$

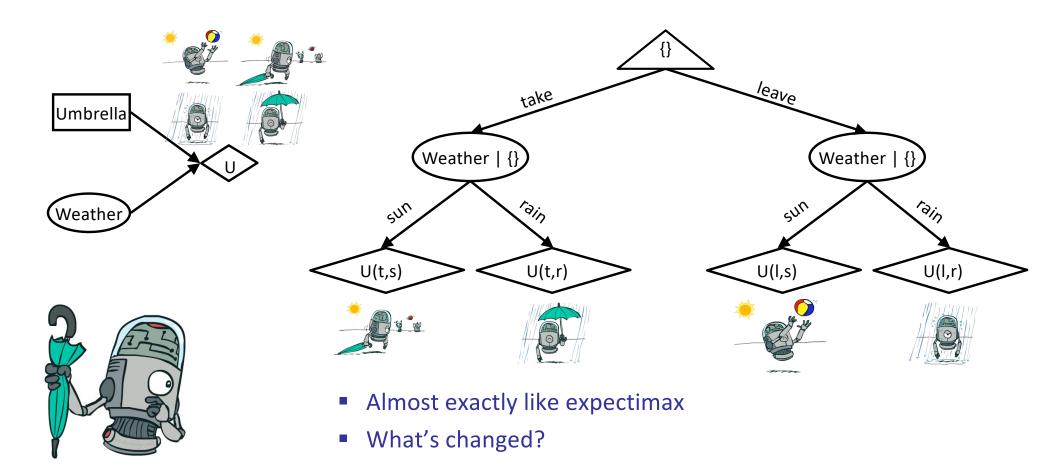
 $= 0.7 \cdot 20 + 0.3 \cdot 70 = 35$

Optimal decision = leave

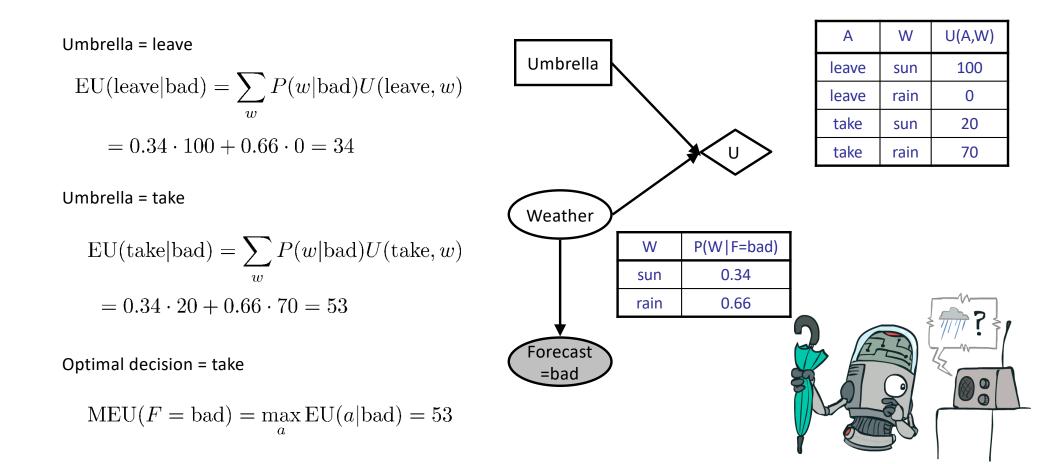
$$\mathrm{MEU}(\phi) = \max_{a} \mathrm{EU}(a) = 70$$

- EU(leave) = Expected Utility of taking action leave
 - In the parentheses, we write an action
 - Calculating EU requires taking an expectation over chance node outcomes
- MEU(ø) = Maximum Expected Utility, given no information
 - In the parentheses, we write the evidence (which nodes we know)
 - Calculating MEU requires taking a maximum over several expectations (one EU per action)

Decisions as Outcome Trees



Example: Decision Networks



Decision Networks: Notation

Umbrella = leave

$$EU(\text{leave}|\text{bad}) = \sum_{w} P(w|\text{bad})U(\text{leave}, w)$$
$$= 0.34 \cdot 100 + 0.66 \cdot 0 = 34$$

Umbrella = take

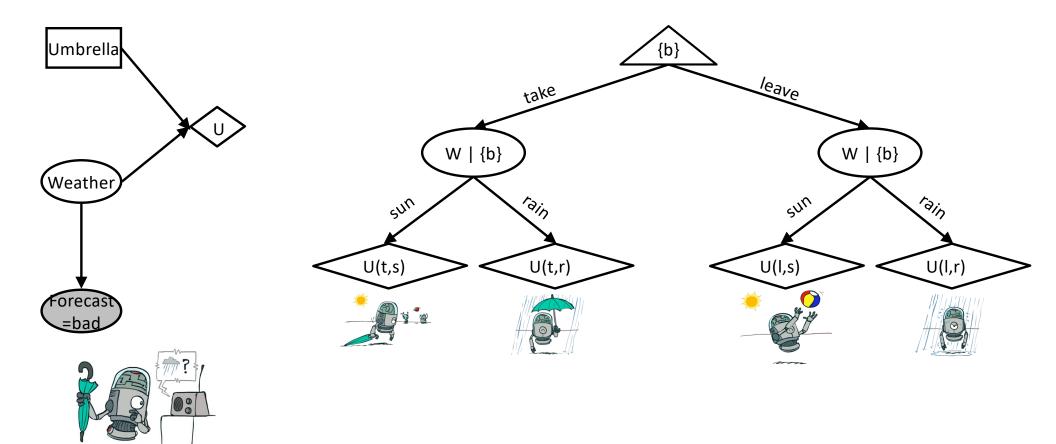
$$EU(take|bad) = \sum_{w} P(w|bad)U(take, w)$$
$$= 0.34 \cdot 20 + 0.66 \cdot 70 = 53$$

Optimal decision = take

$$MEU(F = bad) = \max_{a} EU(a|bad) = 53$$

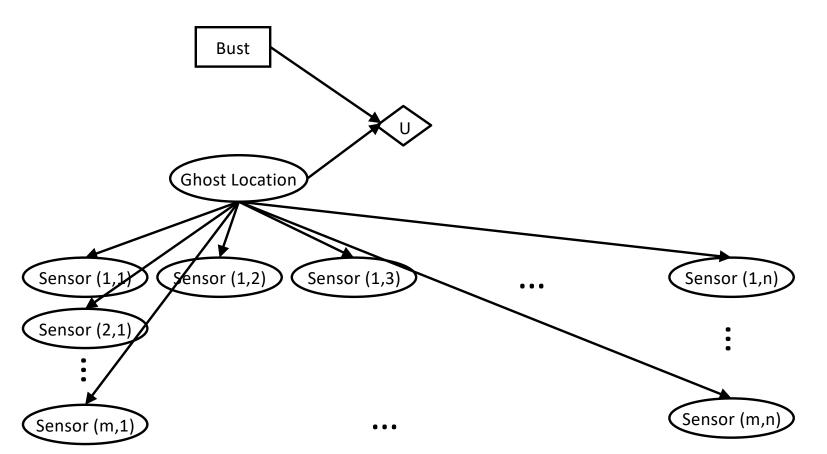
- EU(leave|bad) = Expected Utility of choosing leave, given you know the forecast is bad
 - Left side of conditioning bar: Action being taken
 - Right side of conditioning bar: The random variable(s) we know the value of (evidence)
- MEU(F=bad) = Maximum Expected Utility, given you know the forecast is bad
 - In the parentheses, we write the evidence (which nodes we know)

Decisions as Outcome Trees



Ghostbusters Decision Network

Demo: Ghostbusters with probability



Video of Demo Ghostbusters with Probability

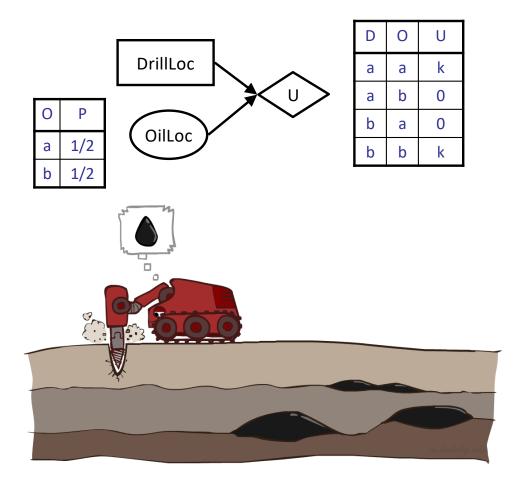
Game:

- Costs 1 to make a measurement
- Measurement gives noisy estimate of distance to ghost
- When we blast, game is over
- If we blast the ghost, we get utility of 250

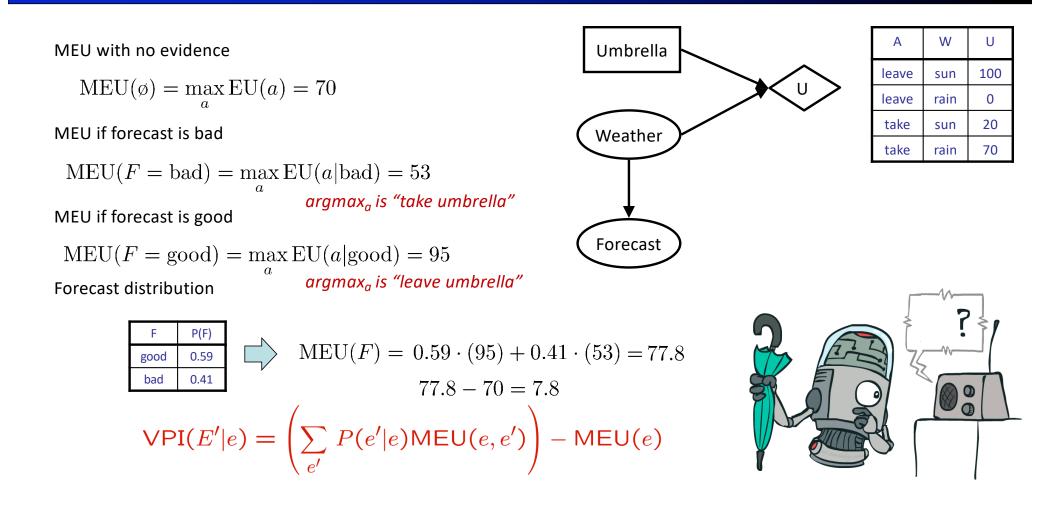
Value of Information

Value of Information

- Idea: compute value of acquiring evidence
 - Can be done directly from decision network
- Example: buying oil drilling rights
 - Two blocks A and B, exactly one has oil, worth k
 - You can drill in one location
 - Prior probabilities 0.5 each, & mutually exclusive
 - Drilling in either A or B has EU = k/2, MEU = k/2
- Question: what's the value of information of O?
 - Value of knowing which of A or B has oil
 - Value is expected gain in MEU from new info
 - Survey may say "oil in a" or "oil in b"
 - If we know OilLoc, MEU is k (either way)
 - Gain in MEU from knowing OilLoc?
 - VPI(OilLoc) = k k/2 = k/2
 - Fair price of information: k/2



Value of Information Example: Weather



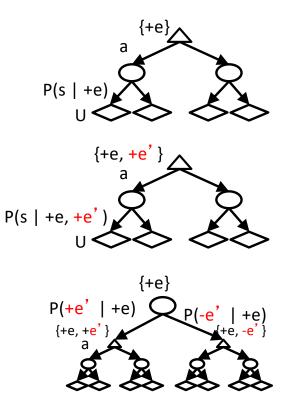
"Value of Perfect Information"

- Assume we have evidence E=e. Value if we act now: $MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$
- Assume we see that E' = e'. Value if we act then: $MEU(e, e') = \max_{a} \sum_{s} P(s|e, e') U(s, a)$
- BUT E' is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E' is revealed and then we act:

$$\mathsf{MEU}(e, E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e, e')$$

 Value of information: how much MEU goes up by revealing E' first then acting, over acting now:

$$\operatorname{VPI}(E'|e) = \operatorname{MEU}(e, E') - \operatorname{MEU}(e)$$



VPI: Notation

- MEU(e) = Maximum Expected Utility, given evidence E=e
 - In the parentheses, we write the evidence (which nodes we know)
 - Calculating MEU requires taking a maximum over several expectations (one EU per action)
- VPI(E'|e) = Expected gain in utility for knowing the value of E', given that I know the value of e so far
 - Left side of conditioning bar: The random variable(s) we want to know the value of revealing
 - Right side of conditioning bar: The random variable(s) we already know the value of
 - Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome of E', because we don't know the value of E')

$$MEU(e) = \max_{a} \sum_{s} P(s|e) U(s,a)$$
$$VPI(E'|e) = \left(\sum_{e'} P(e'|e)MEU(e,e')\right) - MEU(e)$$
$$MEU(e,e') = \max_{a} \sum_{s} P(s|e,e') U(s,a)$$

VPI: Computation Workflow

 $\mathsf{MEU}(e) = \max_{a} \, \mathsf{EU}(a|e)$

 $MEU(e, e') = \max_{a} EU(a|e, e')$ (calculate this for all values e' that E' could take)

$$\mathsf{MEU}(e, E') = \sum_{e'} P(e'|e) \mathsf{MEU}(e, e')$$

MEU(e, E') - MEU(e) = VPI(E'|e)

Video of Demo Ghostbusters with VPI

Game:

- Costs 1 to make a measurement
- Measurement gives noisy estimate of distance to ghost
- When we blast, game is over
- If we blast the ghost, we get utility of 250

VPI Properties

Nonnegative

 $\forall E', e : \mathsf{VPI}(E'|e) \ge 0$

(Positive if different observed values of e' lead to different optimal decisions)

Subadditive

 $\operatorname{VPI}(E_j, E_k|e) \leq \operatorname{VPI}(E_j|e) + \operatorname{VPI}(E_k|e)$

(think of observing the same E_i twice)

Order-independent

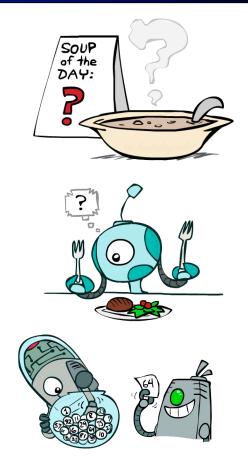
 $VPI(E_j, E_k|e) = VPI(E_j|e) + VPI(E_k|e, E_j)$ $= VPI(E_k|e) + VPI(E_j|e, E_k)$

Value of information contd.

- General idea: value of information = *expected improvement in decision quality* from observing value of a variable
 - E.g., oil company deciding on seismic exploration and test drilling
 - E.g., doctor deciding whether to order a blood test
 - E.g., person deciding on whether to look before crossing the road
- Decision network contains everything needed to compute it!
- VPI($E_i | e$) = [$\sum_{e_i} P(e_i | e) \max_a EU(a | e_i, e)$] max_a EU(a | e)

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be \$0 or \$100. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

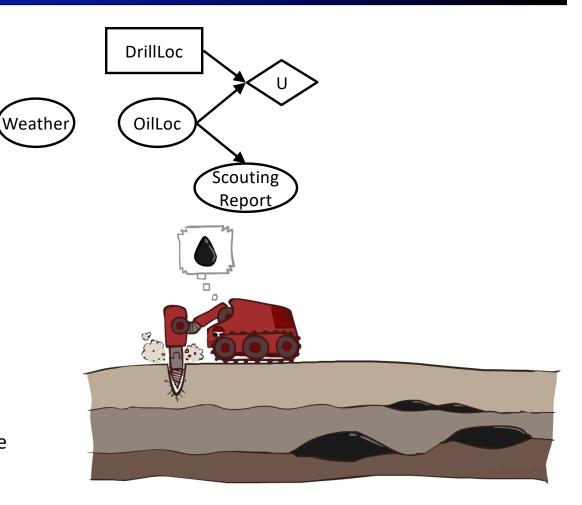


Value of Imperfect Information?

- No such thing (as we formulate it)
- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(ScoutingReport) ?
- VPI(OilLoc) ?
- VPI(Weather) ?
- VPI(OilLoc | ScoutingReport) vs
 VPI(ScoutingReport | OilLoc) ?
- Generally:
 - VPI(Z | CurrentEvidence) = 0
 - if Parents(U) <u>I</u> Z | CurrentEvidence



Bonus slide (if time)

Post-decision Disappointment: the Optimizer's Curse

- Usually we don't have direct access to exact utilities, only *estimates*
 - E.g., you could make one of k investments
 - An unbiased expert assesses their expected net profit V₁,...,V_k
 - You choose the best one V*
 - With high probability, its actual value is considerably less than V*
- This is a serious problem in many areas:
 - Future performance of mutual funds
 - Efficacy of drugs measured by trials
 - Statistical significance in scientific papers
 - Winning an auction

Suppose true net profit is 0 and estimate ~ N(0,1); Max of k estimates:

