CS 188: Artificial Intelligence

 Rational Decisions

Slides from Stuart Russell and Peyrin Kao
University of California, Berkeley

Utilities

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1)
- Utilities summarize the agent's goals
- Theorem: any "rational" preferences can
 be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
- Why don't we hard-wire behaviors?

Maximum Expected Utility

- Principle of maximum expected utility:
- A rational agent should chose the action that maximizes its expected utility, given its knowledge
- Questions:
- Where do utilities come from?
- How do we know such utilities even exist?

- How do we know that averaging makes sense?
- What if our behavior (preferences) can't be described by utilities?

Utility magnitudes are meaningful

- For worst-case minimax reasoning, terminal value scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- The optimal decision is invariant under any monotonic transformation
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Utilities: Uncertain Outcomes

Deriving Utilities from Rational Preferences

Preferences

- An agent must have preferences among:
- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$
L=[p, A ;(1-p), B]
$$

- Notation:

A Prize

- Preference: $A>B$
- Indifference: $A^{\sim} B$

Rational Preferences

- We want some constraints on preferences before we call them rational, such as:

$$
\text { Axiom of Transitivity: }(A>B) \wedge(B>C) \Rightarrow(A>C)
$$

- Costs of irrationality:
- An agent with intransitive preferences can be induced to give away all of its money
- If $B>C$, then an agent with C would pay (say) 1 cent to get B
- If $A>B$, then an agent with B would pay (say) 1 cent to get A
- If $C>A$, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

The Axioms of Rationality
Orderability:
$(A>B) \vee(B>A) \vee(A \sim B)$
Transitivity:
$(A>B) \wedge(B>C) \Rightarrow(A>C)$
Continuity:
$(A>B>C) \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability:
$(A \sim B) \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity:

$$
\begin{aligned}
& (A>B) \Rightarrow \\
& \quad(p \geq q) \Leftrightarrow[p, A ; 1-p, B] \geq[q, A ; 1-q, B]
\end{aligned}
$$

Theorem: Rational preferences imply behavior describable as maximization of expected utility

MEU Principle

- Theorem [Ramsey, 1931; von Neumann \& Morgenstern, 1944]
- Given any preferences satisfying these constraints, there exists a real-valued function U such that:

$$
\begin{aligned}
& U(A) \geq U(B) \Leftrightarrow A \geq B \\
& U\left(\left[p_{1}, S_{1} ; \ldots ; p_{n}, S_{n}\right]\right)=p_{1} U\left(S_{1}\right)+\ldots+p_{n} U\left(S_{n}\right)
\end{aligned}
$$

- I.e. values assigned by U preserve preferences of both prizes and lotteries!
- Optimal policy invariant under positive affine transformation $U^{\prime}=a U+b, a>0$

- Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: rationality does not require representing or manipulating utilities and probabilities
- E.g., a lookup table for perfect tic-tac-toe

Human Utilities

Human Utilities

- Utilities map states to real numbers. Which numbers?
- Standard approach to assessment (elicitation) of human utilities:
- We want to assign a utility to prize A
- Compare a prize A to a standard lottery L_{p} between
- "best possible prize" S_{\top} with probability p
- "worst possible catastrophe" S_{\perp} with probability 1-p

- Adjust lottery probability p until indifference: $A^{\sim} L_{p}$
- Resulting p is a utility in $[0,1]$

> Pay \$50

Money

- Money does not behave as a utility function, but we can talk about the utility of having money (or being in debt)
- Given a lottery $L=[p, \$ X ;(1-p), \$ Y]$
- The expected monetary value $\mathrm{EMV}(L)=p X+(1-p) Y$
- The utility is $U(L)=p U(\$ X)+(1-p) U(\$ Y)$
- Typically, $U(L)<U(E M V(L))$
- In this sense, people are risk-averse

- E.g., how much would you pay for a lottery ticket $\mathrm{L}=[0.5, \$ 10,000 ; 0.5, \$ 0]$?
- The certainty equivalent of a lottery $C E(L)$ is the cash amount such that $\operatorname{CE}(L) \sim L$
- The insurance premium is $\mathrm{EMV}(L)-\mathrm{CE}(L)$
- If people were risk-neutral, this would be zero!
- Pay an insurance premium to get out of a lottery

(a)

(b)
- House burns down, cybercriminals take your company's data, you die and leave your family with no income

Utilities of Sequences

Utilities of Sequences

- What preferences should an agent have over prize sequences?
- More or less? [1,2,2] or [2,3,4]
- Now or later? $[0,0,1]$ or $[1,0,0]$

Stationary Preferences

- Theorem: if we assume stationary preferences: $\left[a_{1}, a_{2}, \ldots\right]>\left[b_{1}, b_{2}, \ldots\right] \Leftrightarrow\left[c, a_{1}, a_{2}, \ldots\right]>\left[c, b_{1}, b_{2}, \ldots\right]$ then there is only one way to define utilities:
- Additive discounted utility:

$$
U\left(\left[r_{0}, r_{1}, r_{2}, \ldots\right]\right)=r_{0}+\gamma r_{1}+\nu^{2} r_{2}+\ldots
$$

where $\gamma \in(0,1]$ is the discount factor

CS 188: Artificial Intelligence

Decision Networks and Value of Information

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Decision Networks

Decision Networks

Decision Networks

- MEU: choose the action which maximizes the expected utility given the evidence
- Can directly operationalize this with decision networks
- Bayes nets with nodes for utility and actions
- Lets us calculate the expected utility for each action
- New node types:
- Chance nodes (just like BNs)
- Actions (rectangles, cannot have parents, act as observed evidence)
- Utility node (diamond, depends on action
 and chance nodes)

Decision Networks

- Action selection
- Instantiate all evidence
- Set action node(s) each possible way
- Calculate posterior for all parents of utility node, given the evidence
- Calculate expected utility for each action
- Choose maximizing action

Decision Networks

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella = take

$$
\mathrm{EU}(\text { take })=\sum_{w} P(w) U(\operatorname{take}, w)
$$

$$
=0.7 \cdot 20+0.3 \cdot 70=35
$$

Optimal decision $=$ leave

$$
\operatorname{MEU}(\varnothing)=\max _{a} \operatorname{EU}(a)=70
$$

Decision Networks: Notation

Umbrella $=$ leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave })=\sum_{w} P(w) U(\text { leave }, w) \\
& =0.7 \cdot 100+0.3 \cdot 0=70
\end{aligned}
$$

Umbrella $=$ take

$$
\begin{aligned}
& \mathrm{EU}(\text { take })=\sum_{w} P(w) U(\text { take }, w) \\
& =0.7 \cdot 20+0.3 \cdot 70=35
\end{aligned}
$$

Optimal decision = leave

$$
\operatorname{MEU}(\varnothing)=\max _{a} \mathrm{EU}(a)=70
$$

- EU(leave) $=$ Expected Utility of taking action leave
- In the parentheses, we write an action
- Calculating EU requires taking an expectation over chance node outcomes
- $\operatorname{MEU}(\varnothing)=$ Maximum Expected Utility, given no information
- In the parentheses, we write the evidence (which nodes we know)
- Calculating MEU requires taking a maximum over several expectations (one EU per action)

Decisions as Outcome Trees

- Almost exactly like expectimax
- What's changed?

Example: Decision Networks

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \cdot 100+0.66 \cdot 0=34
\end{aligned}
$$

Umbrella $=$ take

$$
\begin{aligned}
& \mathrm{EU}(\text { take } \mid \mathrm{bad})=\sum_{w} P(w \mid \mathrm{bad}) U(\text { take }, w) \\
& =0.34 \cdot 20+0.66 \cdot 70=53
\end{aligned}
$$

Optimal decision = take

Decision Networks: Notation

Umbrella = leave

$$
\begin{aligned}
& \mathrm{EU}(\text { leave } \mid \text { bad })=\sum_{w} P(w \mid \text { bad }) U(\text { leave }, w) \\
& \quad=0.34 \cdot 100+0.66 \cdot 0=34
\end{aligned}
$$

Umbrella = take

$$
\begin{aligned}
& \mathrm{EU}(\text { take } \mid \mathrm{bad})=\sum_{w} P(w \mid \text { bad }) U(\text { take }, w) \\
& \quad=0.34 \cdot 20+0.66 \cdot 70=53
\end{aligned}
$$

Optimal decision = take

$$
\operatorname{MEU}(F=\mathrm{bad})=\max _{a} \mathrm{EU}(a \mid \mathrm{bad})=53
$$

- EU(leave|bad) = Expected Utility of choosing leave, given you know the forecast is bad
- Left side of conditioning bar: Action being taken
- Right side of conditioning bar: The random variable(s) we know the value of (evidence)
- MEU(F=bad) = Maximum Expected Utility, given you know the forecast is bad
- In the parentheses, we write the evidence (which nodes we know)

Decisions as Outcome Trees

병훕

Ghostbusters Decision Network

Video of Demo Ghostbusters with Probability

- Game:
- Costs 1 to make a measurement
- Measurement gives noisy estimate of distance to ghost
- When we blast, game is over
- If we blast the ghost, we get utility of 250

Value of Information

Value of Information

- Idea: compute value of acquiring evidence
- Can be done directly from decision network
- Example: buying oil drilling rights
- Two blocks A and B, exactly one has oil, worth k
- You can drill in one location
- Prior probabilities 0.5 each, \& mutually exclusive
- Drilling in either A or B has $E U=k / 2, M E U=k / 2$
- Question: what's the value of information of O?
- Value of knowing which of A or B has oil
- Value is expected gain in MEU from new info
- Survey may say "oil in a" or "oil in b"
- If we know OilLoc, MEU is k (either way)
- Gain in MEU from knowing OilLoc?
- $\operatorname{VPI}($ Oilloc $)=k-k / 2=k / 2$
- Fair price of information: k/2

Value of Information Example: Weather

MEU with no evidence

$$
\operatorname{MEU}(\varnothing)=\max _{a} \mathrm{EU}(a)=70
$$

MEU if forecast is bad

$$
\begin{aligned}
& \mathrm{MEU}(F=\mathrm{bad})=\max _{a} \mathrm{EU}(a \mid \mathrm{bad})=53 \\
& \mathrm{MEU} \text { if forecast is good } \\
& \operatorname{argmax}_{a} \text { is "take umbrella" }
\end{aligned}
$$

A	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$
\begin{aligned}
& \operatorname{MEU}(F=\operatorname{good})=\max _{a} \mathrm{EU}(a \mid \operatorname{good})=95 \\
& \text { Forecast distribution }
\end{aligned} \quad \operatorname{argmax}_{a} \text { is "leave umbrella" }
$$

F	P(F)		$\operatorname{MEU}(F)=0.59 \cdot(95)+0.41 \cdot(53)=77.8$
good	0.59		
bad	0.41		

$$
\operatorname{VPI}\left(E^{\prime} \mid e\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
$$

"Value of Perfect Information"

- Assume we have evidence $\mathrm{E}=\mathrm{e}$. Value if we act now:
$\operatorname{MEU}(e)=\max _{a} \sum_{s} P(s \mid e) U(s, a)$
- Assume we see that $\mathrm{E}^{\prime}=\mathrm{e}^{\prime}$. Value if we act then:
$\operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)$
- BUT E^{\prime} is a random variable whose value is unknown, so we don't know what e' will be
- Expected value if E^{\prime} is revealed and then we act: $\operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)$
- Value of information: how much MEU goes up by revealing E^{\prime} first then acting, over acting now:
 $\operatorname{VPI}\left(E^{\prime} \mid e\right)=\operatorname{MEU}\left(e, E^{\prime}\right)-\operatorname{MEU}(e)$

VPI: Notation

- MEU(e) = Maximum Expected Utility, given evidence E=e
- In the parentheses, we write the evidence (which nodes we know)
- Calculating MEU requires taking a maximum over several expectations (one EU per action)
- $\operatorname{VPI}\left(E^{\prime} \mid e\right)=$ Expected gain in utility for knowing the value of E^{\prime}, given that I know the value of e so far
- Left side of conditioning bar: The random variable(s) we want to know the value of revealing
- Right side of conditioning bar: The random variable(s) we already know the value of
- Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome of E^{\prime}, because we don't know the value of E^{\prime})

$$
\begin{aligned}
\operatorname{MEU}(e) & =\max _{a} \sum_{s} P(s \mid e) U(s, a) \\
\operatorname{MEU}\left(e, e^{\prime}\right) & =\max _{a} \sum_{s} P\left(s \mid e, e^{\prime}\right) U(s, a)
\end{aligned} \quad \operatorname{VPI}\left(E^{\prime} \mid e\right)=\left(\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right)\right)-\operatorname{MEU}(e)
$$

VPI: Computation Workflow

$$
\begin{aligned}
& \operatorname{MEU}(e)=\max _{a} \operatorname{EU}(a \mid e) \\
& \operatorname{MEU}\left(e, e^{\prime}\right)=\max _{a} \operatorname{EU}\left(a \mid e, e^{\prime}\right) \quad \text { (calculate this for all values e' that } \mathrm{E}^{\prime} \text { could take) } \\
& \operatorname{MEU}\left(e, E^{\prime}\right)=\sum_{e^{\prime}} P\left(e^{\prime} \mid e\right) \operatorname{MEU}\left(e, e^{\prime}\right) \\
& \operatorname{MEU}\left(e, E^{\prime}\right)-\operatorname{MEU}(e)=\operatorname{VPI}\left(E^{\prime} \mid e\right)
\end{aligned}
$$

Video of Demo Ghostbusters with VPI

- Game:
- Costs 1 to make a measurement
- Measurement gives noisy estimate of distance to ghost
- When we blast, game is over
- If we blast the ghost, we get utility of 250

VPI Properties

- Nonnegative

$$
\forall E^{\prime}, e: \operatorname{VPI}\left(E^{\prime} \mid e\right) \geq 0
$$

(Positive if different observed values of e^{\prime} lead to
 different optimal decisions)

- Subadditive

$$
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) \leq \operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e\right)
$$

(think of observing the same E_{j} twice)

- Order-independent

$$
\begin{aligned}
\operatorname{VPI}\left(E_{j}, E_{k} \mid e\right) & =\operatorname{VPI}\left(E_{j} \mid e\right)+\operatorname{VPI}\left(E_{k} \mid e, E_{j}\right) \\
& =\operatorname{VPI}\left(E_{k} \mid e\right)+\operatorname{VPI}\left(E_{j} \mid e, E_{k}\right)
\end{aligned}
$$

Value of information contd.

- General idea: value of information = expected improvement in decision quality from observing value of a variable
- E.g., oil company deciding on seismic exploration and test drilling
- E.g., doctor deciding whether to order a blood test
- E.g., person deciding on whether to look before crossing the road
- Decision network contains everything needed to compute it!
- $\operatorname{VPI}\left(E_{i} \mid \mathrm{e}\right)=\left[\sum_{e_{i}} P\left(e_{i} \mid e\right) \max _{a} \mathrm{EU}\left(a \mid e_{i}, e\right)\right]-\max _{a} \mathrm{EU}(a \mid e)$

Quick VPI Questions

- The soup of the day is either clam chowder or split pea, but you wouldn't order either one. What's the value of knowing which it is?
- There are two kinds of plastic forks at a picnic. One kind is slightly sturdier. What's the value of knowing which?
- You're playing the lottery. The prize will be $\$ 0$ or $\$ 100$. You can play any number between 1 and 100 (chance of winning is 1%). What is the value of knowing the winning number?

Value of Imperfect Information?

- No such thing (as we formulate it)

- Information corresponds to the observation of a node in the decision network
- If data is "noisy" that just means we don't observe the original variable, but another variable which is a noisy version of the original one

VPI Question

- VPI(ScoutingReport) ?
- VPI(OilLoc) ?
- VPI(Weather) ?
- VPI(OilLoc | ScoutingReport) vs VPI(ScoutingReport | OilLoc) ?
- Generally:

VPI($Z \mid$ CurrentEvidence) $=0$
if Parents(U) \Perp Z | CurrentEvidence

Bonus slide (if time)

Post-decision Disappointment: the Optimizer's Curse

- Usually we don't have direct access to exact utilities, only estimates
- E.g., you could make one of k investments
- An unbiased expert assesses their expected net profit V_{1}, \ldots, V_{k}
- You choose the best one V^{*}
- With high probability, its actual value is considerably less than V^{*}
- This is a serious problem in many areas:
- Future performance of mutual funds
- Efficacy of drugs measured by trials
- Statistical significance in scientific papers
- Winning an auction

Suppose true net profit is 0 and estimate $\sim \mathrm{N}(0,1)$; Max of k estimates:

