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Utilities



Utilities

§ Utilities are functions from outcomes 
(states of the world) to real numbers 
that describe an agent’s preferences

§ Where do utilities come from?
§ In a game, may be simple (+1/-1)
§ Utilities summarize the agent’s goals
§ Theorem: any “rational” preferences can 

be summarized as a utility function

§ We hard-wire utilities and let 
behaviors emerge
§ Why don’t we hard-wire behaviors?



Maximum Expected Utility

§ Principle of maximum expected utility:
§ A rational agent should chose the action that maximizes its 

expected utility, given its knowledge

§ Questions:
§ Where do utilities come from?
§ How do we know such utilities even exist?
§ How do we know that averaging makes sense?
§ What if our behavior (preferences) can’t be described by utilities?



Utility magnitudes are meaningful

§ For worst-case minimax reasoning, terminal value scale doesn’t matter
§ We just want better states to have higher evaluations (get the ordering right)
§ The optimal decision is invariant under any monotonic transformation

§ For average-case expectimax reasoning, we need magnitudes to be meaningful
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Utilities: Uncertain Outcomes
Getting ice cream

Get Single Get Double

Oops Whew!



Deriving Utilities from Rational Preferences



Preferences

§ An agent must have preferences among:
§ Prizes: A, B, etc.
§ Lotteries: situations with uncertain prizes

L = [p, A;  (1-p), B]

§ Notation:
§ Preference: A > B
§ Indifference: A ~ B

A                  B

p              1-p

A LotteryA Prize

A



§ We want some constraints on preferences before we call them rational, such as:

§ Costs of irrationality:
§ An agent with intransitive preferences can

be induced to give away all of its money
§ If B > C, then an agent with C would pay (say) 1 cent to get B
§ If A > B, then an agent with B would pay (say) 1 cent to get A
§ If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

Axiom of Transitivity:  (A  > B) Ù (B  > C) Þ (A  > C)  



Orderability:
 (A  >  B) Ú (B  > A) Ú (A ~ B) 
Transitivity:
 (A  > B) Ù (B  > C) Þ (A > C)
Continuity:
 (A  > B  >  C) Þ $p [p, A;  1-p, C] ~ B
Substitutability:
 (A ~ B) Þ [p, A;  1-p, C] ~ [p, B;  1-p, C] 
Monotonicity:
 (A > B) Þ
      (p ³ q) Û [p, A;  1-p, B] ³  [q, A;  1-q, B] 

Rational Preferences

Theorem: Rational preferences imply behavior describable as maximization of expected utility

The Axioms of Rationality



§ Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
§ Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

U(A) ³ U(B)  Û A ³ B
U([p1,S1; … ; pn,Sn]) = p1U(S1) + … + pnU(Sn) 

§ I.e. values assigned by U preserve preferences of both prizes and lotteries!
§ Optimal policy invariant under positive affine transformation U’ = aU+b, a>0

§ Maximum expected utility (MEU) principle:
§ Choose the action that maximizes expected utility
§ Note: rationality does not require representing or manipulating utilities and probabilities

§ E.g., a lookup table for perfect tic-tac-toe

MEU Principle



Human Utilities



§ Utilities map states to real numbers. Which numbers?
§ Standard approach to assessment (elicitation) of human utilities:

§ We want to assign a utility to prize A
§ Compare a prize A to a standard lottery Lp between

§ “best possible prize” ST with probability p
§ “worst possible catastrophe” S^ with probability 1-p

§ Adjust lottery probability p until indifference: A ~ Lp
§ Resulting p is a utility in [0,1]

Human Utilities

0.999999                              0.000001

No change

Pay $50

Instant death



Money
§ Money does not behave as a utility function, but we can 

talk about the utility of having money (or being in debt)
§ Given a lottery L = [p, $X; (1-p), $Y]

§ The expected monetary value EMV(L) = pX + (1-p)Y
§ The utility is U(L) = pU($X) + (1-p)U($Y)
§ Typically, U(L) < U( EMV(L) )
§ In this sense, people are risk-averse
§ E.g., how much would you pay for a lottery ticket  

L=[0.5, $10,000;  0.5, $0]?
§ The certainty equivalent of a lottery CE(L) is the cash 

amount such that CE(L) ~ L
§ The insurance premium is EMV(L) - CE(L)
§ If people were risk-neutral, this would be zero!

§ Pay an insurance premium to get out of a lottery
§ House burns down, cybercriminals take your company’s data, you die and leave 

your family with no income

U
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Utilities of Sequences



Utilities of Sequences

§ What preferences should an agent have over prize sequences?

§ More or less?

§ Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Stationary Preferences

§ Theorem: if we assume stationary preferences:
[a1, a2, …] > [b1, b2, …] Û [c, a1, a2, …] > [c, b1, b2, …] 
then there is only one way to define utilities:

§ Additive discounted utility:
U([r0, r1, r2,…]) = r0 + γr1 + γ2r2 + …    

where γ Î (0,1] is the discount factor
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Decision Networks



Decision Networks

Weather

Forecast

Umbrella

U



Decision Networks
§ MEU: choose the action which maximizes the expected utility given the evidence

Weather

Forecast

Umbrella

U

§ Can directly operationalize this with 
decision networks

§ Bayes nets with nodes for utility and 
actions

§ Lets us calculate the expected utility for 
each action

§ New node types:

§ Chance nodes (just like BNs)

§ Actions (rectangles, cannot have parents, 
act as observed evidence)

§ Utility node (diamond, depends on action 
and chance nodes)



Decision Networks

Weather

Forecast

Umbrella

U

§ Action selection

§ Instantiate all evidence

§ Set action node(s) each 
possible way

§ Calculate posterior for all 
parents of utility node, given 
the evidence

§ Calculate expected utility for 
each action

§ Choose maximizing action



Decision Networks

Weather

Umbrella

U

W P(W)
sun 0.7
rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)
leave sun 100
leave rain 0
take sun 20
take rain 70



Decision Networks: Notation

Umbrella = leave

Umbrella = take

Optimal decision = leave

§ EU(leave) = Expected Utility of taking action 
leave
§ In the parentheses, we write an action
§ Calculating EU requires taking an expectation 

over chance node outcomes

§ MEU(ø) = Maximum Expected Utility, given 
no information
§ In the parentheses, we write the evidence (which 

nodes we know)
§ Calculating MEU requires taking a maximum over 

several expectations (one EU per action)



Decisions as Outcome Trees

§ Almost exactly like expectimax
§ What’s changed?

U(t,s)

Weather | {} Weather | {}

take leave

{}

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsunWeather

Umbrella

U



Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Decision Networks: Notation

§ EU(leave|bad) = Expected Utility of choosing 
leave, given you know the forecast is bad
§ Left side of conditioning bar: Action being taken
§ Right side of conditioning bar: The random 

variable(s) we know the value of (evidence)

§ MEU(F=bad) = Maximum Expected Utility, 
given you know the forecast is bad
§ In the parentheses, we write the evidence (which 

nodes we know)

Umbrella = leave

Umbrella = take

Optimal decision = take



Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

take leave

sun

U(t,r)

rain

U(l,s) U(l,r)

rainsun

{b}

Weather

Forecast
=bad

Umbrella

U



Ghostbusters Decision Network

Ghost Location

Sensor (1,1)

Bust

U

Sensor (1,2) Sensor (1,3) Sensor (1,n)

Sensor (2,1)

Sensor (m,1) Sensor (m,n)…

…

…

…
Demo: Ghostbusters with probability 



Video of Demo Ghostbusters with Probability

§ Game:
§ Costs 1 to make a 

measurement
§ Measurement gives 

noisy estimate of 
distance to ghost

§ When we blast, game 
is over

§ If we blast the ghost, 
we get utility of 250



Value of Information



Value of Information

§ Idea: compute value of acquiring evidence
§ Can be done directly from decision network

§ Example: buying oil drilling rights
§ Two blocks A and B, exactly one has oil, worth k
§ You can drill in one location
§ Prior probabilities 0.5 each, & mutually exclusive
§ Drilling in either A or B has EU = k/2, MEU = k/2

§ Question: what’s the value of information of O?
§ Value of knowing which of A or B has oil
§ Value is expected gain in MEU from new info
§ Survey may say “oil in a” or “oil in b”
§ If we know OilLoc, MEU is k (either way)
§ Gain in MEU from knowing OilLoc?
§ VPI(OilLoc) = k – k/ 2 = k/2
§ Fair price of information: k/2

OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2



Value of Information Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution

argmaxa is “take umbrella”

argmaxa is “leave umbrella”



“Value of Perfect Information”

§ Assume we have evidence E=e.  Value if we act now:

§ Assume we see that E’ = e’.  Value if we act then:

§ BUT E’ is a random variable whose value is
unknown, so we don’t know what e’ will be

§ Expected value if E’ is revealed and then we act:

§ Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)
U

{+e}
P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a



VPI: Notation

§ MEU(e) = Maximum Expected Utility, given evidence E=e
§ In the parentheses, we write the evidence (which nodes we know)
§ Calculating MEU requires taking a maximum over several expectations (one EU per action)

§ VPI(E'|e) = Expected gain in utility for knowing the value of E', given that I know the 
value of e so far
§ Left side of conditioning bar: The random variable(s) we want to know the value of revealing
§ Right side of conditioning bar: The random variable(s) we already know the value of
§ Calculating VPI requires taking an expectation over several MEUs (one MEU per possible outcome 

of E', because we don’t know the value of E')



VPI: Computation Workflow

(calculate this for all values e’ that E’ could take) 



Video of Demo Ghostbusters with VPI

§ Game:
§ Costs 1 to make a 

measurement
§ Measurement gives 

noisy estimate of 
distance to ghost

§ When we blast, game 
is over

§ If we blast the ghost, 
we get utility of 250



VPI Properties

§ Nonnegative

(Positive if different observed values of e’ lead to 
different optimal decisions)

§ Subadditive 

(think of observing the same Ej twice)

§ Order-independent

≤



Value of information contd.

§ General idea: value of information = expected improvement in decision quality
from observing value of a variable 
§ E.g., oil company deciding on seismic exploration and test drilling
§ E.g., doctor deciding whether to order a blood test
§ E.g., person deciding on whether to look before crossing the road

§ Decision network contains everything needed to compute it!

§ VPI(Ei | e) = [ åei P(ei | e) maxa EU(a|ei,e) ] - maxa EU(a|e) 



Quick VPI Questions

§ The soup of the day is either clam chowder or 
split pea, but you wouldn’t order either one.  
What’s the value of knowing which it is?

§ There are two kinds of plastic forks at a picnic.  
One kind is slightly sturdier.  What’s the value of 
knowing which?

§ You’re playing the lottery.  The prize will be $0 or 
$100.  You can play any number between 1 and 
100 (chance of winning is 1%).  What is the value 
of knowing the winning number?



Value of Imperfect Information?

§ No such thing (as we formulate it)

§ Information corresponds to the 
observation of a node in the 
decision network

§ If data is “noisy” that just means we 
don’t observe the original variable, 
but another variable which is a noisy 
version of the original one



VPI Question

§ VPI(ScoutingReport) ?

§ VPI(OilLoc) ?

§ VPI(Weather) ?

§ VPI(OilLoc | ScoutingReport) vs 
VPI(ScoutingReport | OilLoc) ?

§ Generally: 
VPI( Z | CurrentEvidence) = 0 
if          Parents(U)        Z   |   CurrentEvidence

OilLoc

DrillLoc

U

Scouting
Report

Weather



Bonus slide (if time)



Post-decision Disappointment: the Optimizer’s Curse

§ Usually we don’t have direct access to 
exact utilities, only estimates
§ E.g., you could make one of k investments
§ An unbiased expert assesses their expected 

net profit V1,…,Vk
§ You choose the best one V*
§ With high probability, its actual value is 

considerably less than V*
§ This is a serious problem in many areas:

§ Future performance of mutual funds
§ Efficacy of drugs measured by trials
§ Statistical significance in scientific papers
§ Winning an auction  0
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Suppose true net profit is 0
and estimate ~ N(0,1);
Max of k estimates:


