CS 188: Artificial Intelligence Linear and Logistic Regression

Spring 2024
University of California, Berkeley

Classification with Feature Vectors

$$
\begin{array}{lll}
x & f(x) & y
\end{array}
$$

Regression with Feature Vectors

$$
x
$$

$$
f(x) \quad y
$$

Compatibility:
8

Linear Clascifiers Regression

- Inputs are feature values
- Each feature has a weight
- Sum is the activnton prediction
$h_{w} \underset{i}{\operatorname{activation}}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)$
- If the activation 1 s :
- Positive, output +1
- Negative, output -1

Output h_{w}

Weights

Dot product $w \cdot f$ gives the prediction

Which weight makes the least sense for predicting office rent?

Linear Regression

- Inputs are feature values
- Each feature has a weight
- Sum is the prediction

Either make sure $\mathrm{h}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)+\mathrm{w}_{0}{ }^{\text {one of the }}$ features is a constant or add this w_{0} to the equation (equivalent)

Linear Regression with 2d Feature Vector

Code credit: Claude3

Review: Vectors

- A tuple like $(2,3)$ can be interpreted two different ways:

A point on a coordinate grid

A vector in space. Notice we are not on a coordinate grid.

- A tuple with more elements like $(2,7,-3,6)$ is a point or vector in higherdimensional space (hard to visualize)

Review: Vectors

- Definition of dot product:
- $a \cdot b=\sum_{i} a_{i} b_{i}=|a||b| \cos (\theta)$
- θ is the angle between the vectors a and b
- Consequences of this definition:
- Vectors closer together
= "similar" vectors
= smaller angle θ between vectors
$=$ larger (more positive) dot product
- If $\theta<90^{\circ}$, then dot product is positive
- If $\theta=90^{\circ}$, then dot product is zero
- If $\theta>90^{\circ}$, then dot product is negative

Weights

Linear Regression with 2d Feature Vector

w points in direction where best-fit plane is steepest
Code credit: Claude3

How to find the weights?

$$
\begin{gathered}
\text { known } \\
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1}^{1} & \cdots & x_{n}^{1} \\
1 & x_{1}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{1}^{N} & \cdots & x_{n}^{N}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \\
\substack{\text { different values point } \\
\text { of same feature }}
\end{gathered}
$$

How to find the weights?

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}
\text { data point } \\
\left.\begin{array}{cccc}
1 & x_{1}^{1} & \cdots & x_{n}^{1} \\
1 & x_{1}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{1}^{N} & \cdots & x_{n}^{N}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]
\end{array}\right.
$$

What does matrix product Xw look like? Vector like wand y
What is the entry in the first row and first (and only) column of Xw?

$$
w_{0}+w_{1} x_{1}^{1}+\ldots+w_{n} x_{n}^{1}
$$

We want Xw to look like y

Linear Regression

- Inputs are feature values
- Each feature has a weight
- Sum is the prediction

$$
\mathrm{h}_{w}(x)=\sum_{i} w_{i} \cdot f_{i}(x)=w \cdot f(x)
$$

Premise of linear regression

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \mathbf{X}=\left[\begin{array}{cccc}
1 & x_{1}^{1} & \cdots & x_{n}^{1} \\
1 & x_{1}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{1}^{N} & \cdots & x_{n}^{N}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{n}
\end{array}\right]
$$

For a proposed weight vector w, its badness is $|X w-y|^{2} / 2$
$|v|$ is the length of the vector; $|v|^{2}=\Sigma_{i} v_{i}^{2}=v^{\top} v$
Loss
So badneostw $)=\boldsymbol{\Sigma}_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{w}}\left(\mathrm{x}^{\mathrm{i}}\right) \mathrm{w}-\mathrm{y}_{\mathrm{i}}\right)^{2} / 2$

Solving for w

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{c}
\text { data point } \\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \mathbf{U}=\left[\begin{array}{cccc}
\left.\begin{array}{ccc}
1 & x_{1}^{1} & \cdots
\end{array} x_{n}^{1} \right\rvert\, \\
1 & x_{1}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
1 & x_{1}^{N} & \cdots & x_{n}^{N}
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] \quad \text { Find } \operatorname{argmin}_{\mathrm{w}}|\mathrm{Xw}-\mathrm{y}|^{2} / 2 \\
\nabla_{\mathbf{w}} \frac{1}{2}(\mathbf{y}-\mathbf{X w})^{T}(\mathbf{y}-\mathbf{X w})=0 \\
=\nabla_{\mathbf{w}} \frac{1}{2}\left(\mathbf{y}^{T} \mathbf{y}-\mathbf{y}^{T} \mathbf{X} \mathbf{w}-\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y}+\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}\right) \\
=\nabla_{\mathbf{w}} \frac{1}{2}\left(\mathbf{y}^{T} \mathbf{y}-2 \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{y}+\mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w}\right)=-\mathbf{X}^{T} \mathbf{y}+\mathbf{X}^{T} \mathbf{X} \mathbf{w} \\
\hat{\mathbf{w}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \quad \begin{array}{l}
\text { If you ever actually need to } \\
\text { do this sort of stuff: }
\end{array} \\
\begin{array}{l}
\text { https://cs.nyu.edu/roweis/ } \\
\text { notes/matrixid.pdf }
\end{array}
\end{gathered}
$$

Back to Classification: Improving the Perceptron

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)
- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake

Non-Separable Case: Probabilistic Decision

Perceptrons give deterministic decisions

- Perceptron scoring: $z=w \cdot f(x)$
- If $z=w \cdot f(x)$ positive \rightarrow classifier says: 1.0 probability this is class +1
- If $z=w \cdot f(x)$ negative \rightarrow classifier says: 0.0 probability this is class +1
- Step function

$$
H(z)= \begin{cases}1 & z>0 \\ 0 & z \leq 0\end{cases}
$$

- z = output of perceptron
$\mathrm{H}(\mathrm{z})=$ probability the class is +1 , according to the classifier

How to get probabilistic decisions?

- Perceptron scoring: $z=w \cdot f(x)$
- If $z=w \cdot f(x)$ very positive \rightarrow probability of class +1 should approach 1.0
- If $z=w \cdot f(x)$ very negative \rightarrow probability of class +1 should approach 0.0
- Sigmoid function

$$
\phi(z)=\frac{1}{1+e^{-z}}
$$

- z = output of perceptron
- $\phi(z)=$ probability the class is +1 , according to the classifier

Probabilistic Decisions: Example

$$
\frac{1}{1+e^{-w x}} \quad \begin{aligned}
& \text { where } w \text { is some weight constant (vector) we have to learn, } \\
& \text { and } w x \text { is the dot product of } w \text { and } x
\end{aligned}
$$

- Suppose $w=[-3,4,2]$ and $x=[1,2,0]$
- What label will be selected if we classify deterministically?
- $w x=-3+8+0=5$
- 5 is positive, so the classifier guesses the positive label
- What are the probabilities of each label if we classify probabilistically?
- $1 /\left(1+\mathrm{e}^{-5}\right)=0.9933$ probability of positive label
- $1-0.9933=0.0067$ probability of negative label

A 1D Example

$$
P(\operatorname{red} \mid x)=\frac{1}{1+e^{-w x}} \quad \text { where } \mathrm{w} \text { is some weight constant (1D vector) we have to learn }
$$

Where does the sigmoid function come from?

- Suppose we have two hypotheses:
- $A: P($ heads $)=2 / 3$
- $B: P($ heads $)=1 / 3$
- Each heads we see is a "bit" or factor of 2 of evidence for Hypothesis A
- Each tails we see is a "bit" of evidence for B
- If we have n more heads than tails:
- A is 2^{n} times more likely than B
- $P(A)=2^{n} /\left(1+2^{n}\right)$
- $=1 /\left(1+2^{-n}\right)$
- ... but we like e better than 2

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data

$$
\begin{aligned}
\text { Likelihood } & =P(\text { training data } \mid w) \\
& =\prod_{i} P(\text { training datapoint } i \mid w) \\
& =\prod_{i} P\left(\operatorname{point} x^{(i)} \text { has label } y^{(i)} \mid w\right) \\
& =\prod_{i} P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
\text { Log Likelihood } & =\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data

$$
\begin{aligned}
& P\left(\text { point } x^{(i)} \text { has label } y^{(i)}=+1 \mid w\right) \\
= & P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right) \\
= & \frac{1}{1+e^{-w \cdot x^{(i)}}}
\end{aligned} \left\lvert\,=\begin{aligned}
& P\left(\operatorname{point} x^{(i)} \text { has label } y^{(i)}=-1 \mid w\right) \\
& = \\
& P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right) \\
& = \\
& 1-\frac{1}{1+e^{-w \cdot x^{(i)}}}
\end{aligned}\right.
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with: $\quad P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}$

$$
P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
$$

That's Logistic Regression Loss(w) =-log likelihood(w)

Logistic Regression Example

- What function are we trying to maximize for this training data?
- Data point [2, 1] is class +1
- Data point $[0,-2]$ is class +1
- Data point $[-1,-1]$ is class -1

$$
\begin{gathered}
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}} \\
P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{gathered}
$$

Logistic Regression Example

- What function are we trying to maximize for this training data?
- Data point $[2,1]$ is class +1
- Data point $[0,-2]$ is class +1
- Data point $[-1,-1]$ is class -1

$$
\underset{w}{\operatorname{argmax}}\left[\log \left(\frac{1}{1+e^{-\left(2 w_{1}+w_{2}\right)}}\right)+\log \left(\frac{1}{1+e^{-\left(-2 w_{2}\right)}}\right)+\log \left(1-\frac{1}{1+e^{-\left(-w_{1}-w_{2}\right)}}\right)\right]
$$

Separable Case: Deterministic Decision - Many Options

Separable Case: Probabilistic Decision - Clear Preference

Multiclass Logistic Regression

- Recall Perceptron:
- A weight vector for each class: w_{y}
- Score (activation) of a class y: $w_{y} \cdot f(x)$
- Prediction highest score wins $\quad y=\arg \max _{y} w_{y} \cdot f(x)$

- How to make the scores into probabilities?

Multi-Class Probabilistic Decisions: Example

$$
z_{1}, z_{2}, z_{3} \rightarrow \frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}, \frac{e^{z_{2}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}, \frac{e^{z_{3}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}
$$

- Suppose $w_{1}=[-3,4,2], w_{2}=[2,2,7], w_{3}=[0,-1,0]$, and $x=[1,2,0]$
- What label will be selected if we classify deterministically?
- $w_{1} \cdot x=5$, and $w_{2} \cdot x=6$, and $w_{3} \cdot x=-2$
- $w_{2} \cdot x$ has the highest score, so the classifier guesses class 2
- What are the probabilities of each label if we classify probabilistically?
- Probability of class 1 : $e^{5} /\left(e^{5}+e^{6}+e^{-2}\right)=0.2689$
- Probability of class 2: $e^{6} /\left(e^{5}+e^{6}+e^{-2}\right)=0.7310$
- Probability of class 3: $e^{-2} /\left(e^{5}+e^{6}+e^{-2}\right)=0.0002$

Best w?

- Recall maximum likelihood estimation: Choose the w value that maximizes the probability of the observed (training) data

$$
\begin{aligned}
\text { Likelihood } & =P(\text { training data } \mid w) \\
& =\prod_{i} P(\text { training datapoint } i \mid w) \\
& =\prod_{i} P\left(\operatorname{point} x^{(i)} \text { has label } y^{(i)} \mid w\right) \\
& =\prod_{i} P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
\text { Log Likelihood } & =\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
\end{aligned}
$$

Best w?

- Maximum likelihood estimation:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

with:

$$
P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y}(i) \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
$$

$=$ Multi-Class Logistic Regression

Multi-Class Logistic Regression Example

- What function are we trying to maximize for this training data?
- Data point [2, 1] is class Red
- Data point $[0,-2]$ is class Green
- Data point $[-1,-1]$ is class Blue

$$
\begin{gathered}
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
\quad P\left(y^{(i)} \mid x^{(i)} ; w\right)=\frac{e^{w_{y}(i) \cdot f\left(x^{(i)}\right)}}{\sum_{y} e^{w_{y} \cdot f\left(x^{(i)}\right)}}
\end{gathered}
$$

Multi-Class Logistic Regression Example

- What function are we trying to maximize for this training data?
- Data point [2, 1] is class Red
- Data point $[0,-2]$ is class Green
- Data point $[-1,-1]$ is class Blue

Log probability of $[2,1]$ being red

Log probability of [0,-2] being green

Log probability of $[-1,-1]$ being blue

Softmax with Different Bases

$$
P(\operatorname{red} \mid x)=\frac{e^{w_{\mathrm{red}} \cdot x}}{e^{w_{\mathrm{red}} \cdot x}+e^{w_{\mathrm{blue}} \cdot x}}
$$

Softmax and Sigmoid

- Binary perceptron is a special case of multi-class perceptron
- Multi-class: Compute $w_{y} \cdot f(x)$ for each class y , pick class with the highest activation
- Binary case:

Let the weight vector of +1 be w (which we learn).
Let the weight vector of -1 always be 0 (constant).

- Binary classification as a multi-class problem:

Activation of negative class is always 0 .
If $w \cdot f$ is positive, then activation of $+1(w \cdot f)$ is higher than $-1(0)$.
If $w \cdot f$ is negative, then activation of $-1(0)$ is higher than $+1(w \cdot f)$.

$$
\begin{array}{cc}
\text { Softmax } & \text { Sigmoid } \\
P(\operatorname{red} \mid x)=\frac{e^{w_{\mathrm{red}} \cdot x}}{e^{w_{\mathrm{red}} \cdot x}+e^{w_{\mathrm{blue}} \cdot x}} & \text { with } \mathrm{w}_{\mathrm{red}}=0 \text { becomes: }
\end{array} \quad P(\mathrm{red} \mid x)=\frac{1}{1+e^{-w x}}
$$

Next Up

- Optimization
- i.e., how do we solve:

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

CS 188: Artificial Intelligence

Optimization

Spring 2024 --- University of California, Berkeley

Review: Derivatives and Gradients

- What is the derivative of the function $g(x)=x^{2}+3$?

$$
\frac{d g}{d x}=2 x
$$

- What is the derivative of $g(x)$ at $x=5$?

$$
\left.\frac{d g}{d x}\right|_{x=5}=10
$$

Review: Derivatives and Gradients

- What is the gradient of the function $g(x, y)=x^{2} y$?
- Recall: Gradient is a vector of partial derivatives with respect to each variable

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]=\left[\begin{array}{c}
2 x y \\
x^{2}
\end{array}\right]
$$

- What is the derivative of $g(x, y)$ at $x=0.5, y=0.5$?

$$
\left.\nabla g\right|_{x=0.5, y=0.5}=\left[\begin{array}{c}
2(0.5)(0.5) \\
\left(0.5^{2}\right)
\end{array}\right]=\left[\begin{array}{c}
0.5 \\
0.25
\end{array}\right]
$$

Hill Climbing

- Recall from local search: simple, general idea
- Start wherever
- Repeat: move to the best neighboring state
- If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
- Optimization over a continuous space
- Infinitely many neighbors!
- How to do this efficiently?

1-D Optimization

- Could evaluate $g\left(w_{0}+h\right)$ and $g\left(w_{0}-h\right)$
- Then step in best direction
- Or, evaluate derivative: $\quad \frac{\partial g\left(w_{0}\right)}{\partial w}=\lim _{h \rightarrow 0} \frac{g\left(w_{0}+h\right)-g\left(w_{0}-h\right)}{2 h}$
- Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $\quad g\left(w_{1}, w_{2}\right)$
- Updates:

$$
\begin{aligned}
& w_{1} \leftarrow w_{1}+\alpha * \frac{\partial g}{\partial w_{1}}\left(w_{1}, w_{2}\right) \\
& w_{2} \leftarrow w_{2}+\alpha * \frac{\partial g}{\partial w_{2}}\left(w_{1}, w_{2}\right)
\end{aligned}
$$

- Updates in vector notation:

$$
w \leftarrow w+\alpha * \nabla_{w} g(w)
$$

with: $\nabla_{w} g(w)=\left[\begin{array}{c}\frac{\partial g}{\partial w_{1}}(w) \\ \frac{\partial g}{\partial w_{2}}(w)\end{array}\right]=$ gradient

Gradient Ascent

- Idea:
- Start somewhere
- Repeat: Take a step in the gradient direction

What is the Steepest Direction?*

$$
\max _{\Delta: \Delta_{1}^{2}+\Delta_{2}^{2} \leq \varepsilon} g(w+\Delta)
$$

- First-Order Taylor Expansion: $g(w+\Delta) \approx g(w)+\frac{\partial g}{\partial w_{1}} \Delta_{1}+\frac{\partial g}{\partial w_{2}} \Delta_{2}$
- Steepest Descent Direction: $\max _{\Delta: \Delta_{1}^{2}+\Delta_{2}^{2} \leq \varepsilon} g(w)+\frac{\partial g}{\partial w_{1}} \Delta_{1}+\frac{\partial g}{\partial w_{2}} \Delta_{2}$
- Note: $\quad \max _{\Delta:\|\Delta\| \leq \varepsilon} \Delta^{\top} a \quad \rightarrow \quad \Delta=\varepsilon \frac{a}{\|a\|}$
- Hence, solution: $\quad \Delta=\varepsilon \frac{\nabla g}{\|\nabla g\|} \quad$ Gradient direction = steepest direction $\quad \nabla g=\left[\begin{array}{c}\frac{\partial g}{\partial w_{1}} \\ \frac{\partial g}{\partial w_{2}}\end{array}\right]$

Gradient in n dimensions

$$
\nabla g=\left[\begin{array}{c}
\frac{\partial g}{\partial w_{1}} \\
\frac{g}{\partial w_{2}} \\
\cdots \\
\frac{\partial g}{\partial w_{n}}
\end{array}\right]
$$

Optimization Procedure: Gradient Ascent

```
- init w
- for iter = 1, 2, ...
\[
w \leftarrow w+\alpha * \nabla g(w)
\]
```

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
- Crude rule of thumb: update changes w about 0.1-1 \%

What was the point again?

- We want to set w to maximize the log likelihood that logistic regression assigns to the data
with:

$$
\begin{gathered}
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right) \\
P\left(y^{(i)}=+1 \mid x^{(i)} ; w\right)=\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
\end{gathered}
$$

$$
P\left(y^{(i)}=-1 \mid x^{(i)} ; w\right)=1-\frac{1}{1+e^{-w \cdot f\left(x^{(i)}\right)}}
$$

So we (repeatedly) calculate $\nabla_{\mathrm{w}} \mathrm{II}(\mathrm{w})$ and then use that do gradient ascent

Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \underbrace{\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)}_{g(w)}
$$

- init W
- for iter $=1,2$, ...

$$
w \leftarrow w+\alpha * \sum_{i} \nabla \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

$$
\begin{aligned}
& \text { - init } w \\
& \text { - for iter }=1,2, \ldots \\
& \quad \text { - pick random j } \\
& \quad w \leftarrow w+\alpha * \nabla \log P\left(y^{(j)} \mid x^{(j)} ; w\right)
\end{aligned}
$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$
\max _{w} l l(w)=\max _{w} \sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; w\right)
$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

```
- init w
- for iter = 1, 2, ...
```

- pick random subset of training examples J

$$
w \leftarrow w+\alpha * \sum_{j \in J} \nabla \log P\left(y^{(j)} \mid x^{(j)} ; w\right)
$$

