
Review: Logistic Regression

§ Maximum likelihood estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))



Review: Multi-Class Logistic Regression

§ Maximum likelihood estimation:

with:

Suppose y(i) = 3 … 

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))



What’s still needed

§ Optimization

§ i.e., how do we solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)
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Review: Derivatives and Gradients

§ What is the derivative of the function ?

§ What is the derivative of g(x) at x=5?



Review: Derivatives and Gradients

§ What is the gradient of the function  ?
§ Recall: Gradient is a vector of partial derivatives with respect to 

each variable

§ What is the derivative of g(x, y) at x=0.5, y=0.5?



Hill Climbing

§ Recall from local search: simple, general idea
§ Start wherever
§ Repeat: move to the best neighboring state
§ If no neighbors better than current, quit

§ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space
• Infinitely many neighbors!
• How to do this efficiently?



1-D Optimization

§ Could evaluate and
§ Then step in best direction

§ Or, evaluate derivative:

§ Tells which direction to step into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h



2-D Optimization

Source: offconvex.org



Gradient Ascent

§ Perform update in uphill direction for each coordinate
§ The steeper the slope (i.e. the higher the derivative) the bigger the step 

for that coordinate

§ E.g., consider: 

§ Updates:

g(w1, w2)

w2  w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1  w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates in vector notation:

 with:

w  w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

= gradient



§ Idea: 
§ Start somewhere
§ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775



Optimization Procedure: Gradient Ascent

§ init

§ for iter = 1, 2, …
w

§     : learning rate --- tweaking parameter that needs to be 
chosen carefully

§ How? Try multiple choices
§ Crude rule of thumb: update changes       about 0.1 – 1 %

↵

w

w  w + ↵ ⇤ rg(w)



§ We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Neural Network Architectures



Manual Feature Design vs. Deep Learning

o Manual feature design requires:
o Domain-specific expertise
o Domain-specific effort

o What if we could learn the features, too?
o Deep Learning



Review: Perceptron
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Review: Perceptron with Sigmoid Activation
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2-Layer, 2-Neuron Neural Network
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2-Layer, 2-Neuron Neural Network
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2-Layer, 2-Neuron Neural Network
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2-Layer, 2-Neuron Neural Network
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2-Layer, 2-Neuron Neural Network
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2-Layer, 2-Neuron Neural Network

The same equation, formatted with matrices:

The same equation, formatted more compactly by introducing variables representing each matrix:



2-Layer, 2-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 2).
Weights to be learned.

Shape (1, 2).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, 2).
Outputs of layer 1, 

inputs to layer 2.

Shape (2, 1).
Weights to be learned.

Shape (1, 1).
Output of network.



2-Layer, 3-Neuron Neural Network
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2-Layer, 3-Neuron Neural Network



2-Layer, 3-Neuron Neural Network

Shape (1, 3).
Input feature vector.

Shape (3, 3).
Weights to be learned

Shape (1, 3).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, 3).
Outputs of layer 1, 

inputs to layer 2.

Shape (3, 1).
Weights to be learned.

Shape (1, 1).
Output of network.



Generalize: Number of hidden neurons
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The hidden layer could have any arbitrary number n neurons.



Generalize: Number of hidden neurons

Shape (1, 3).
Input feature vector.

Shape (3, n).
Weights to be learned

Shape (1, n).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, n).
Outputs of layer 1, 

inputs to layer 2.

Shape (n, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

The hidden layer could have any arbitrary number n neurons.



Generalize: Number of input features
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The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.



Generalize: Number of input features

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, n).
Outputs of layer 1, 

inputs to layer 2.

Shape (n, 1).
Weights to be learned.

Shape (1, 1).
Output of network.

The input feature vector doesn’t necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.



Generalize: Number of outputs
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The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.



Generalize: Number of outputs

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, n).
Outputs of layer 1, 

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (1, dim(y)).
Output of network.

The output doesn’t necessarily need to be just one number; it could be some arbitrary dim(y) length vector.



Generalized 2-Layer Neural Network

Shape (1, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (1, n).
Outputs of layer 1, 
inputs to layer 2.

Shape (1, n).
Outputs of layer 1, 

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (1, dim(y)).
Output of network.

The shape of a weight matrix is determined by the dimensions of the input and output of that layer.

Layer 1 has weight matrix with shape (dim(x), n). 
These are the weights for n neurons, each taking 
dim(x) features as input.

This transforms a dim(x)-dimensional input 
vector into an n-dimensional output vector.

Layer 2 has weight matrix with shape (n, dim(y)). 
These are the weights for dim(y) neurons, each 
taking n features as input.

This transforms an n-dimensional input vector 
into a dim(y)-dimensional output vector.



3-Layer, 3-Neuron Neural Network
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3-Layer, 3-Neuron Neural Network
§ Layer 1:

§ x has shape (1, 3). Input vector, 3-dimensional.
§ Wlayer 1 has shape (3, 3). Weights for 3 neurons, each taking in 

a 3-dimensional input vector.
§ hlayer 1 has shape (1, 3). Outputs of the 3 neurons at this layer.

§ Layer 2:
§ hlayer 1 has shape (1, 3). Outputs of the 3 neurons from the 

previous layer.
§ Wlayer 2 has shape (3, 3). Weights for 3 new neurons, each 

taking in the 3 previous perceptron outputs.
§ hlayer 2 has shape (1, 3). Outputs of the 3 new neurons at this 

layer.

§ Layer 3:
§ hlayer 2 has shape (1, 3). Outputs from the previous layer.
§ Wlayer 3 has shape (3, 1). Weights for 1 final neuron, taking in 

the 3 previous perceptron outputs.
§ y has shape (1, 1). Output of the final neuron.



Generalized 3-Layer Neural Network

§ Layer 1:
§ x has shape (1, dim(x))
§ Wlayer 1 has shape (dim(x), dim(L1))
§ hlayer 1 has shape (1, dim(L1))

§ Layer 2:
§ hlayer 1 has shape (1, dim(L1))
§ Wlayer 2 has shape (dim(L1), dim(L2))
§ hlayer 2 has shape (1, dim(L2))

§ Layer 3:
§ hlayer 2 has shape (1, dim(L2))
§ Wlayer 3 has shape (dim(L2), dim(y))
§ y has shape (1, dim(y))



Multi-Layer Neural Network
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Note: Sometimes we 
don’t apply the non-
linear function in the 
last layer.



Multi-Layer Neural Network

§ Input to a layer: some dim(x)-dimensional input vector
§ Output of a layer: some dim(y)-dimensional output vector

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector.

The result has shape (1, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result. 

The result still has shape (1, dim(y)).

§ Big idea: Chain layers together
§ The input could come from a previous layer’s output
§ The output could be used as the input to the next layer



Deep Neural Network
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Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Same basic idea

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

many arrays of parameters, not just a vector

Dependance of P on w is much more elaborate

(set of all parameters 
often written as 𝜃 not w)



“Batched” Computation
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“Batched” Computation

We’re not changing the architecture; we’re just running the 2-neuron, 2-layer network twice to classify 2 inputs.



“Batched” Computation

Rewriting in matrix form:



“Batched” Computation

Shape (batch, dim(x)).
Input feature vector.

Shape (dim(x), n).
Weights to be learned

Shape (batch, n).
Outputs of layer 1, 
inputs to layer 2.

Shape (batch, n).
Outputs of layer 1, 

inputs to layer 2.

Shape (n, dim(y)).
Weights to be learned.

Shape (batch, dim(y)).
Output of network.

Big idea: We can “stack” inputs together to classify multiple inputs at once. The result is multiple outputs “stacked” together.



Multi-Layer Network, with Batches

§ Input to a layer: batch different dim(x)-dimensional input vectors
§ Output of a layer: batch different dim(y)-dimensional output vectors

§ dim(y) is the number of neurons in the layer (1 output per neuron)

§ Process of converting input to output:
§ Multiply the (batch, dim(x)) input matrix with a (dim(x), dim(y)) weight vector.

The result has shape (batch, dim(y)).
§ Apply some non-linear function (e.g. sigmoid) to the result. 

The result still has shape (batch, dim(y)).

§ Big idea: Stack inputs/outputs to batch them
§ The multiplication by weights and non-linear function will be applied to each row 

(data point in the batch) separately.
§ Efficiently parallelized on a GPU



Training Neural Networks



Training Neural Networks

§ Step 1: For each input in the training (sub)set x, predict a classification y
using the current weights

§ Step 2: Compare predictions with the true y values, using a loss function
§ Higher value of loss function = bad model
§ Lower value of loss function = good model
§ Example: zero-one loss: count the number of misclassified inputs
§ Example: log loss (derived from maximum likelihood; more on this soon)
§ Example: sum of squared errors (if you’re solving a regression problem)

§ Step 3: Use numerical method (e.g. gradient descent) to minimize loss
§ Loss is a function of the weights. Optimization goal: find weights that minimize loss



Log Loss Function

§ Recall: loss function is a measure of how far off our model is
§ Higher value of loss function = bad model
§ Lower value of loss function = good model

§ Log loss function for binary classification: 

§ yi = The true class of the ith data point in the training dataset (either 0 or 1)
§ pi = The probability of positive class, predicted by our classifier
§ Each data point contributes some loss. The total loss is the sum over all data points.

§ Note: Log loss is a function of the weights
§ Changing the weights changes the predictions pi. The yi do not change.



Log Loss Function

§ Log loss function for a single data point:
§ Case I: True class is y = 1

§ Log loss function becomes just –log(p)
§ If classifier gives p near 0:

The model was confident in guessing y=0
Bad model à high loss value

§ If classifier gives p near 1:
The model was confident in guessing y=1
Good model à low loss value



Log Loss Function

§ Log loss function for a single data point:
§ Case II: True class is y = 0

§ Log loss function becomes just –log(1-p)
§ If classifier gives p near 0:

The model was confident in guessing y=0
Good model à low loss value

§ If classifier gives p near 1:
The model was confident in guessing y=1
Bad model à high loss value

§ Note: This equation uses y=0, not y=-1,
for the negative class



Log Loss Example

§ Data point 1: True class y=1. We predicted p=0.1 probability it’s the positive class.
§ Intuitively: Our guess is bad. We should have guessed closer to p=1.
§ This contributes –log(0.1) = 1 to the loss function.

§ Data point 2: True class y=0. We predicted p=0 probability it’s the positive class.
§ Intuitively: Our guess was perfect. We were certain it was y=0.
§ This contributes –log(1.0) = 0 to our loss function.

§ Data point 3: True class y=1. We predicted 0.8 probability it’s the positive class.
§ Intuitively: Our guess was pretty good, but not perfect.
§ This contributes –log(0.8) = 0.1 to the loss function.

§ Total loss: 1 + 0 + 0.1 = 1.1
§ Goal: Find the weights that lead to the probabilities that minimize this loss function



Optimization Procedure: Gradient Descent

§ init

§ for iter = 1, 2, …

where

and      is computed by running the network on input xi and weights w

w

§     : learning rate --- tweaking parameter that needs to be 
chosen carefully
↵



Computing Gradients

n How do we compute gradients of these loss functions?
n Repeated application of the chain rule:

If 

Then

à Derivatives can be computed by following well-defined procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)



§ Automatic differentiation software 
§ e.g. Theano, TensorFlow, PyTorch, Chainer
§ Only need to program the function g(x,y,w)
§ Can automatically compute all derivatives w.r.t. all entries in w
§ This is typically done by caching info during forward computation pass 

of f, and then doing a backward pass = “backpropagation”
§ Autodiff / Backpropagation can often be done at computational cost 

comparable to the forward pass

§ Need to know this exists
§ How this is done?  -- outside of scope of CS188

Automatic Differentiation



§ Gradient of at  w1 = 2, w2 = 3, w3 = 2
§ Think of g as a composition of many functions

§ Then, we can use the chain rule to compute the gradient

§ g = b + c

§ b = a × w2

§ a = w1
4

§ c = 5w1

Backpropagation*

w1

w2

w3

^4

×

×

+
5

w1 = 2

w2 = 3

w3 = 2

a = 16

b = 48

c = 10

g = 58



PyTorch is Amazing



PyTorch is Amazing



Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)



max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init

§ for iter = 1, 2, …

w

w  w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

f(x) = g(x) + h(x)

df/dx = d(g + h)/dx = dg/dx + dh/dx

Gradient Ascent on the Log Likelihood Objective



Stochastic Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random j

w

w  w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init

§ for iter = 1, 2, …
§ pick random subset of training examples J

w

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one

w  w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)



Problem with High Learning Rate

Source: offconvex.org



Properties of Neural Networks



Neural Networks Properties

§ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

§ Practical considerations
§ Can be seen as learning the features 

§ Large number of neurons
§ Danger for overfitting
§ (hence early stopping!)



Universal Function Approximation Theorem*

§ In words: Given any continuous function f(x), if a 2-layer neural 
network has enough hidden units, then there is a choice of 
weights that allow it to closely approximate f(x). 

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



Summary of Key Ideas
§ Optimize probability of label given input

§ Continuous optimization
§ Gradient ascent:

§ Compute steepest uphill direction = gradient (= just vector of partial derivatives)
§ Take step in the gradient direction
§ Repeat (until held-out data accuracy starts to drop = “early stopping”)

§ Deep neural nets
§ Last layer = still logistic regression
§ Now also many more layers before this last layer

§ = computing the features
§ à the features are learned rather than hand-designed

§ Universal function approximation theorem
§ If neural net is large enough 
§ Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
§ But remember: need to avoid overfitting  / memorizing the training data à early stopping!

§ Automatic differentiation gives the derivatives efficiently (how? = outside of scope of 188)

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)



Application: Large Language Models



Application: Computer Vision
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Fun Neural Net Demo Site

§ Demo-site:
§ http://playground.tensorflow.org/

http://playground.tensorflow.org/

