CS 188
 Summer 2023

Discussion 3A

1 Bayes Nets: Representation

Parts (a), (b), and (c) pertain to the following Bayes' Net.

(a) Express the joint probability distribution as a product of terms from the Bayes Nets CPTs.
(b) Assume each node can take on 4 values. How many entries do the factors at A, D, and F have?
A: $\quad \mathrm{D}: \quad \mathrm{F}$:
(c) Mark all that are guaranteed to be true:$B \Perp C$$F \Perp G \mid D$$B \Perp F \mid D$$D \Perp E \mid F$$C \Perp G$
$\square E \Perp A \mid D$$D \Perp E$

Parts (d) and (e) pertain to the following CPTs.

A	$P(A)$	A	B	$P(B \mid A)$
+a	0.8			
-a	+b	0.9		
-a	0.2			
	-a	-b	0.1	
-a	+b	0.6		
-a	-b	0.4		

B	C	$P(C \mid B)$
+b	+c	0.8
+b	-c	0.2
-b	+c	0.8
-b	-c	0.2

C	D	$P(D \mid C)$
+c	+d	0.25
+c	-d	0.75
-c	+d	0.5
-c	-d	0.5

(d) State all non-conditional independence assumptions that are implied by the probability distribution tables.
(e) Circle all the Bayes net(s) that can represent a distribution that is consistent with the tables given.

2 Variable Elimination

Using the Bayes Net shown below, we want to compute $P(Y \mid+z)$. All variables have binary domains. We run variable elimination, with the following variable elimination ordering: X, T, U, V, W.

After inserting evidence, we have the following factors to start out with:

$$
P(T), P(U \mid T), P(V \mid T), P(W \mid T), P(X \mid T), P(Y \mid V, W), P(+z \mid X)
$$

(a) When eliminating X we generate a new factor f_{1} as follows,

$$
f_{1}(+z, T)=\sum_{x} P(x \mid T) P(+z \mid x)
$$

which leaves us with the factors:

$$
P(T), P(U \mid T), P(V \mid T), P(W \mid T), P(Y \mid V, W), f_{1}(+z, T)
$$

(b) When eliminating T we generate a new factor f_{2} as follows, which leaves us with the factors:
(c) When eliminating U we generate a new factor f_{3} as follows, which leaves us with the factors:
(d) When eliminating V we generate a new factor f_{4} as follows, which leaves us with the factors:
(e) When eliminating W we generate a new factor f_{5} as follows, which leaves us with the factors:
(f) How would you obtain $P(Y \mid+z)$ from the factors left above:
(g) What is the size of the largest factor that gets generated during the above process?
(h) Does there exist a better elimination ordering (one which generates smaller largest factors)?

