1 Particle Filtering Apprenticeship

We are observing an agent's actions in an MDP and are trying to determine which out of a set $\left\{\pi_{1}, \ldots, \pi_{n}\right\}$ the agent is following. Let the random variable Π take values in that set and represent the policy that the agent is acting under. We consider only stochastic policies, so that A_{t} is a random variable with a distribution conditioned on S_{t} and Π. As in a typical MDP, S_{t} is a random variable with a distribution conditioned on S_{t-1} and A_{t-1}. The full Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfortunately, however, we, the observer, cannot see the states S_{t}. Thus we are forced to use an adapted particle filtering algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate $P\left(\Pi \mid a_{1: t}\right)$.
(a) The Bayes net for part (a) is

(i) Select all of the following that are guaranteed to be true in this model for $t>3$:
\square
\square
$S_{t} \Perp S_{t-2} \mid S_{t-1}$
\square
$S_{t} \Perp S_{t-2} \mid S_{t-1}, A_{1: t-1}$
\square
$S_{t} \Perp S_{t-2} \mid \Pi$
\square
$S_{t} \Perp S_{t-2} \mid \Pi, A_{1: t-1}$
\square
$S_{t} \Perp S_{t-2} \mid \Pi, S_{t-1}$
\square
$S_{t} \Perp S_{t-2} \mid \Pi, S_{t-1}, A_{1: t-1}$
\square
None of the above

We will compute our estimate for $P\left(\Pi \mid a_{1: t}\right)$ by coming up with a recursive algorithm for computing $P\left(\Pi, S_{t} \mid a_{1: t}\right)$. (We can then sum out S_{t} to get the desired distribution; in this problem we ignore that step.)
(ii) Write a recursive expression for $P\left(\Pi, S_{t} \mid a_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t} \mid a_{1: t}\right) \propto \sum_{s_{t-1}} P\left(\Pi, s_{t-1} \mid a_{1: t-1}\right) P\left(a_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right)
$$

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s_{t} and a potential policy π_{i}.
(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate $P\left(\Pi, S_{t} \mid a_{1: t}\right)$.

1. Elapse time: for each particle $\left(s_{t}, \pi_{i}\right)$, sample a successor s_{t+1} from $P\left(S_{t+1} \mid s_{t}, a_{t}\right)$.

The policy π^{\prime} in the new particle is π_{i}.
2. Incorporate evidence: To each new particle $\left(s_{t+1}, \pi^{\prime}\right)$, assign weight $P\left(a_{t+1} \mid s_{t+1}, \pi^{\prime}\right)$.
3. Resample particles from the weighted particle distribution.
(b) We now observe the acting agent's actions and rewards at each time step (but we still don't know the states). Unlike the MDPs in lecture, here we use a stochastic reward function, so that R_{t} is a random variable with a distribution conditioned on S_{t} and A_{t}. The new Bayes net is given by

Notice that the observed rewards do in fact give useful information since d-separation does not give that $R_{t} \Perp \Pi \mid A_{1: t}$.
(i) Give an active path connecting R_{t} and Π when $A_{1: t}$ are observed. Your answer should be an ordered list of nodes in the graph, for example " $S_{t}, S_{t+1}, A_{t}, \Pi, A_{t-1}, R_{t-1}$ ".
R_{t}, S_{t}, A_{t}, Π. This list reversed is also correct, and many other similar (though more complicated) paths are also correct.
(ii) Write a recursive expression for $P\left(\Pi, S_{t} \mid a_{1: t}, r_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t} \mid a_{1: t}, r_{1: t}\right) \propto \sum_{s_{t-1}} P\left(\Pi, s_{t-1} \mid a_{1: t-1}, r_{1: t-1}\right) P\left(a_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right) P\left(r_{t} \mid a_{t}, S_{t}\right)
$$

(c) We now observe only the sequence of rewards and no longer observe the sequence of actions. The new Bayes net is shown on the right.

(i) Write a recursive expression for $P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right)$ in terms of the CPTs in the Bayes net above.

$$
P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right) \propto \sum_{s_{t-1}} \sum_{a_{t-1}} P\left(\Pi, s_{t-1}, a_{t-1} \mid r_{1: t-1}\right) P\left(A_{t} \mid S_{t}, \Pi\right) P\left(S_{t} \mid s_{t-1}, a_{t-1}\right) P\left(r_{t} \mid S_{t}, A_{t}\right)
$$

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s_{t}, a single action a_{t}, and a potential policy π_{i}.
(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in the boxes with the correct values so that the algorithm will approximate $P\left(\Pi, S_{t}, A_{t} \mid r_{1: t}\right)$.

1. Elapse time: for each particle $\left(s_{t}, a_{t}, \pi_{i}\right)$, sample a successor state s_{t+1} from $P\left(S_{t+1} \mid s_{t}, a_{t}\right)$.

Then, sample a successor action a_{t+1} from $P\left(A_{t+1} \mid s_{t+1}, \pi_{i}\right)$.
The policy π^{\prime} in the new particle is π_{i}.
2. Incorporate evidence: To each new particle ($\left.s_{t+1}, a_{t+1}, \pi^{\prime}\right)$, assign weight $P\left(r_{t+1} \mid s_{t+1}, a_{t+1}\right)$. 3. Resample particles from the weighted particle distribution.

Q2. HMMs

Consider a process where there are transitions among a finite set of states s_{1}, \cdots, s_{k} over time steps $i=1, \cdots, N$. Let the random variables X_{1}, \cdots, X_{N} represent the state of the system at each time step and be generated as follows:

- Sample the initial state s from an initial distribution $P_{1}\left(X_{1}\right)$, and set $i=1$
- Repeat the following:

1. Sample a duration d from a duration distribution P_{D} over the integers $\{1, \cdots, M\}$, where M is the maximum duration.
2. Remain in the current state s for the next d time steps, i.e., set

$$
\begin{equation*}
x_{i}=x_{i+1}=\cdots=x_{i+d-1}=s \tag{1}
\end{equation*}
$$

3. Sample a successor state s^{\prime} from a transition distribution $P_{T}\left(X_{t} \mid X_{t-1}=s\right)$ over the other states $s^{\prime} \neq s$ (so there are no self transitions)
4. Assign $i=i+d$ and $s=s^{\prime}$.

This process continues indefinitely, but we only observe the first N time steps.
(a) Assuming that all three states s_{1}, s_{2}, s_{3} are different, what is the probability of the sample sequence $s_{1}, s_{1}, s_{2}, s_{2}, s_{2}, s_{3}, s_{3}$? Write an algebraic expression. Assume $M \geq 3$.

$$
\begin{equation*}
p_{1}\left(s_{1}\right) p_{D}(2) p_{T}\left(s_{2} \mid s_{1}\right) p_{D}(3) p\left(s_{3} \mid s_{2}\right)\left(1-p_{D}(1)\right) \tag{2}
\end{equation*}
$$

At each time step i we observe a noisy version of the state X_{i} that we denote Y_{i} and is produced via a conditional distribution $P_{E}\left(Y_{i} \mid X_{i}\right)$.
(b) Only in this subquestion assume that $N>M$. Let X_{1}, \cdots, X_{N} and Y_{1}, \cdots, Y_{N} random variables defined as above. What is the maximum index $i \leq N-1$ so that $X_{1} \Perp X_{N} \mid X_{i}, X_{i+1}, \cdots, X_{N-1}$ is guaranteed?

$$
i=N-M
$$

(c) Only in this subquestion, assume the max duration $M=2$, and P_{D} uniform over $\{1,2\}$ and each x_{i} is in an alphabet $\{a, b\}$. For $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}\right)$ draw a Bayes Net over these 10 random variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given distribution.
(X1) at (0,0) X1; (X2) at (2,-2) X2; (X3) at (4,0) X3; (X4) at (6,-2) X4; (X5) at (8,0) X5; (Y1) at (0,-4)Y1; (Y2) at $(2,-4) \mathrm{Y} 2 ;(\mathrm{Y} 3)$ at $(4,-4) \mathrm{Y} 3 ;(\mathrm{Y} 4)$ at $(6,-4) \mathrm{Y} 4 ;(\mathrm{Y} 5)$ at $(8,-4) \mathrm{Y} 5 ;(\mathrm{X} 1)-(\mathrm{X} 2) ;(\mathrm{X} 2)-(\mathrm{X} 3) ;(\mathrm{X} 3)-(\mathrm{X} 4) ;(\mathrm{X} 4)-$ (X5); (X1) - (Y1);(X2) - (Y2);(X3) - (Y3);(X4) - (Y4);(X5) - (Y5); (X1) - (X3);(X2) - (X4);(X3) - (X5);
(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write the states $z=(s, t)$ where s is a state of the original system and t represents the time elapsed in that state. For example, the state sequence $s_{1}, s_{1}, s_{1}, s_{2}, s_{3}, s_{3}$ would be represented as $\left(s_{1}, 1\right),\left(s_{1}, 2\right),\left(s_{1}, 3\right),\left(s_{2}, 1\right),\left(s_{3}, 1\right),\left(s_{3}, 2\right)$. Answer all of the following in terms of the parameters $P_{1}\left(X_{1}\right), P_{D}(d), P_{T}\left(X_{j+1} \mid X_{j}\right), P_{E}\left(Y_{i} \mid X_{i}\right), k$ (total number of possible states), N and M (max duration).
(i) What is $P\left(Z_{1}\right)$?

$$
P\left(x_{1}, t\right)= \begin{cases}P_{1}\left(x_{1}\right) & \text { if } t=1 \tag{3}\\ 0 & \text { o.w. }\end{cases}
$$

(ii) What is $P\left(Z_{i+1} \mid Z_{i}\right)$? Hint: You will need to break this into cases where the transition function will behave differently.

$$
P\left(X_{i+1}, t_{i+1} \mid X_{i}, t_{i}\right)= \begin{cases}P_{D}\left(d \geq t_{i}+1 \mid d \geq t_{i}\right) & \text { when } X_{i+1}=X_{i} \text { and } t_{i+1}=t_{i}+1 \text { and } t_{i+1} \leq M \\ P_{T}\left(X_{i+1} \mid X_{i}\right) P_{D}\left(d=t_{i} \mid d \geq t_{i}\right) & \text { when } X_{i+1} \neq X_{i} \text { and } t_{i+1}=1 \\ 0 & \text { o.w. }\end{cases}
$$

Where $P_{D}\left(d \geq t_{i}+1 \mid d \geq t_{i}\right)=P_{D}\left(d \geq t_{i}+1\right) / P_{D}\left(d \geq t_{i}\right)$.
Being in X_{i}, t_{i}, we know that d was drawn $d \geq t_{i}$. Conditioning on this fact, we have two choices, if $d>t_{i}$ then the next state is $X_{i+1}=X_{i}$, and if $d=t_{i}$ then $X_{i+1} \neq X_{i}$ drawn from the transition distribution and $t_{i+1}=1$.
(4)
(iii) What is $P\left(Y_{i} \mid Z_{i}\right)$?

$$
p\left(Y_{i} \mid X_{i}, t_{i}\right)=P_{E}\left(Y_{i} \mid X_{i}\right)
$$

(e) In this question we explore how to write an algorithm to compute $P\left(X_{N} \mid y_{1}, \cdots, y_{N}\right)$ using the particular structure of this process.
Write $P\left(X_{t} \mid y_{1}, \cdots, y_{t-1}\right)$ in terms of other factors. Construct an answer by checking the correct boxes below:

$$
\begin{equation*}
P\left(X_{t} \mid y_{1}, \cdots, y_{t-1}\right)= \tag{ii}
\end{equation*}
$$

(iii)
(i) $\sum_{i=1}^{k} \sum_{d=1}^{M} \sum_{d^{\prime}=1}^{M}$
$\bigcirc \sum_{i=1}^{k}$

$$
\sum_{i=1}^{k} \sum_{d=1}^{M}
$$

$\bigcirc \quad \sum_{d=1}^{M}$
(ii)

$$
\bigcirc\left(Z_{t}=\left(X_{t}, d\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right)
$$

$$
\bigcirc \quad P\left(X_{t} \mid X_{t-1}=s_{d}\right)
$$

$\bigcirc P\left(X_{t} \mid X_{t-1}=s_{i}\right)$
$P\left(Z_{t}=\left(X_{t}, d^{\prime}\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right)$
(iii)

$$
\bigcirc \quad P\left(Z_{t-1}=\left(s_{d}, i\right) \mid y_{1}, \cdots, y_{t-1}\right)
$$

$$
P\left(Z_{t-1}=\left(s_{i}, d\right) \mid y_{1}, \cdots, y_{t-1}\right)
$$

$$
\bigcirc \quad P\left(X_{t-1}=s_{d} \mid y_{1}, \cdots, y_{t-1}\right)
$$

○ $P\left(X_{t-1}=s_{i} \mid y_{1}, \cdots, y_{t-1}\right)$
(iv) Now we would like to include the evidence y_{t} in the picture. What would be the running time of each update of the whole table $P\left(X_{t} \mid y_{1}, \cdots, y_{t}\right)$?. Assume tables corresponding to any factors used in (i), (ii), (iii) have already been computed.
$O\left(k^{2}\right)$
$O\left(k^{2} M^{2}\right)$
$O(k M)$
$\bigcirc\left(k^{2} M\right)$
$O(k M)$

Note: Computing $P\left(X_{N} \mid y_{1}, \cdots, y_{N}\right)$ will take time $N \times$ your answer in (iv).
Just the running time for filtering when the state space is the space of pairs $\left(x_{i}, t_{i}\right)$,
Given $B_{t-1}(z)$, the step $p\left(z_{t} \mid y_{1}, \cdots, y_{t-1}\right)$ can be done in time $k M$. (size of the statespace for z).
The computation to include the y_{t} evidence can be done in $O(1)$ per z_{t}.
Therefore each update to the table per evidence point will take $(M k)^{2}$. So it is $O\left((M k)^{2}\right)$.
Using N steps, the whole algorithm will take $O\left(N k^{2} M^{2}\right)$ to compute $P\left(X_{N} \mid Y_{1}, \cdots, Y_{N}\right)$.
(v) Describe an update rule to compute $P\left(X_{t} \mid y_{1}, \cdots, y_{t-1}\right)$ that is faster than the one you discovered in parts (i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions $Z_{t-1} \rightarrow Z_{t}$.

Answer is $O\left(k^{2} M+k M\right)$.
The answer from the previous section is:

$$
\begin{equation*}
P\left(X_{t} \mid y_{1}, \cdots, y_{t-1}\right)=\sum_{i=1}^{k} \sum_{d=1}^{M} \sum_{d^{\prime}=1}^{M} P\left(Z_{t}=\left(X_{t}, d^{\prime}\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right) P\left(Z_{t-1}=\left(s_{i}, d\right) \mid y_{1}, \cdots, y_{t-1}\right) \tag{5}
\end{equation*}
$$

To compute this value we only really need to loop through those transitions $P\left(Z_{t}=\left(X_{t}, d^{\prime}\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right)$ that can happen with nonzero probability.
For all $X_{t}=s$ we need to sum over all factors of the form $P\left(Z_{t}=\left(s, d^{\prime}\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right) P\left(X_{t-1}=\right.$ $\left.s_{i} \mid y_{i}, \cdots, y_{t-1}\right)$. For a fixed s the factor $P\left(Z_{t}=\left(X_{t}, d^{\prime}\right) \mid Z_{t-1}=\left(s_{i}, d\right)\right)$ can be nonzero only when $s_{i}=s$ and $d^{\prime}=d+1$ (M tuples). And when $s_{i} \neq s$ and $d^{\prime}=1$ and $d=1, \cdots, M$ ($k M$ tuples).
Since this needs to be performed for all k possible values of s, the answer to update the whole table is $O\left(k^{2} M+k M\right)$.

