
CS 188
Summer 2023 Discussion 4C Solutions

1 Particle Filtering Apprenticeship
We are observing an agent’s actions in an MDP and are trying to determine which out of a set {π1, . . . , πn} the
agent is following. Let the random variable Π take values in that set and represent the policy that the agent is acting
under. We consider only stochastic policies, so that At is a random variable with a distribution conditioned on St

and Π. As in a typical MDP, St is a random variable with a distribution conditioned on St−1 and At−1. The full
Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfor-
tunately, however, we, the observer, cannot see the states St. Thus we are forced to use an adapted particle filtering
algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate P (Π | a1:t).

(a) The Bayes net for part (a) is

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

(i) Select all of the following that are guaranteed to
be true in this model for t > 3:

□ St ⊥⊥ St−2 | St−1

■ St ⊥⊥ St−2 | St−1, A1:t−1

□ St ⊥⊥ St−2 | Π

□ St ⊥⊥ St−2 | Π, A1:t−1

■ St ⊥⊥ St−2 | Π, St−1

■ St ⊥⊥ St−2 | Π, St−1, A1:t−1

□ None of the above

We will compute our estimate for P (Π | a1:t) by coming up with a recursive algorithm for computing
P (Π, St | a1:t). (We can then sum out St to get the desired distribution; in this problem we ignore that step.)

(ii) Write a recursive expression for P (Π, St | a1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1)P (at | St,Π)P (St | st−1, at−1)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state st
and a potential policy πi.

(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in
the boxes with the correct values so that the algorithm will approximate P (Π, St | a1:t).
1. Elapse time: for each particle (st, πi), sample a successor st+1 from P (St+1 | st, at).

The policy π′ in the new particle is πi .

2. Incorporate evidence: To each new particle (st+1, π
′), assign weight P (at+1 | st+1, π

′).

3. Resample particles from the weighted particle distribution.

(b) We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the states).
Unlike the MDPs in lecture, here we use a stochastic reward function, so that Rt is a random variable with a
distribution conditioned on St and At. The new Bayes net is given by
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Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

Notice that the observed rewards do in fact give use-
ful information since d-separation does not give that
Rt ⊥⊥ Π | A1:t.

(i) Give an active path connecting Rt and Π when
A1:t are observed. Your answer should be an
ordered list of nodes in the graph, for example
“St, St+1, At,Π, At−1, Rt−1”.

Rt, St, At,Π. This list reversed is also correct, and
many other similar (though more complicated) paths
are also correct.

(ii) Write a recursive expression for P (Π, St | a1:t, r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St | a1:t, r1:t) ∝
∑
st−1

P (Π, st−1 | a1:t−1, r1:t−1)P (at | St,Π)P (St | st−1, at−1)P (rt | at, St)

(c) We now observe only the sequence of rewards and no
longer observe the sequence of actions. The new Bayes
net is shown on the right.

Π

st−1 st st+1

at−1 at at+1

· · ·· · ·

· · · · · ·

rt−1 rt rt+1 · · ·· · ·

(i) Write a recursive expression for P (Π, St, At | r1:t) in terms of the CPTs in the Bayes net above.

P (Π, St, At | r1:t) ∝
∑
st−1

∑
at−1

P (Π, st−1, at−1 | r1:t−1)P (At | St,Π)P (St | st−1, at−1)P (rt | St, At)

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state st, a
single action at, and a potential policy πi.

(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in
the boxes with the correct values so that the algorithm will approximate P (Π, St, At | r1:t).

1. Elapse time: for each particle (st, at, πi), sample a successor state st+1 from P (St+1 | st, at).

Then, sample a successor action at+1 from P (At+1 | st+1, πi).

The policy π′ in the new particle is πi.
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2. Incorporate evidence: To each new particle (st+1, at+1, π
′), assign weight P (rt+1 | st+1, at+1).

3. Resample particles from the weighted particle distribution.
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Q2. HMMs
Consider a process where there are transitions among a finite set of states s1, · · · , sk over time steps i = 1, · · · , N .
Let the random variables X1, · · · , XN represent the state of the system at each time step and be generated as follows:

• Sample the initial state s from an initial distribution P1(X1), and set i = 1

• Repeat the following:

1. Sample a duration d from a duration distribution PD over the integers {1, · · · ,M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set

xi = xi+1 = · · · = xi+d−1 = s (1)

3. Sample a successor state s′ from a transition distribution PT (Xt|Xt−1 = s) over the other states s′ ̸= s
(so there are no self transitions)

4. Assign i = i+ d and s = s′.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1, s2, s3 are different, what is the probability of the sample sequence s1, s1, s2, s2, s2, s3, s3?
Write an algebraic expression. Assume M ≥ 3.

p1(s1)pD(2)pT (s2|s1)pD(3)p(s3|s2)(1− pD(1)) (2)

At each time step i we observe a noisy version of the state Xi that we denote Yi and is produced via a conditional
distribution PE(Yi|Xi).

(b) Only in this subquestion assume that N > M . Let X1, · · · , XN and Y1, · · · , YN random variables defined as
above. What is the maximum index i ≤ N − 1 so that X1 ⊥⊥ XN |Xi, Xi+1, · · · , XN−1 is guaranteed?
i = N −M

(c) Only in this subquestion, assume the max duration M = 2, and PD uniform over {1, 2} and each xi is
in an alphabet {a, b}. For (X1, X2, X3, X4, X5, Y1, Y2, Y3, Y4, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given
distribution.

(X1) at (0,0) X1; (X2) at (2,-2) X2; (X3) at (4,0) X3; (X4) at (6,-2) X4; (X5) at (8,0) X5; (Y1) at (0,-4)Y1; (Y2)
at (2,-4)Y2; (Y3) at (4,-4)Y3; (Y4) at (6,-4)Y4; (Y5) at (8,-4)Y5; (X1) – (X2);(X2) – (X3);(X3) – (X4);(X4) –
(X5);(X1) – (Y1);(X2) – (Y2);(X3) – (Y3);(X4) – (Y4);(X5) – (Y5);(X1) – (X3);(X2) – (X4);(X3) – (X5);

(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write
the states z = (s, t) where s is a state of the original system and t represents the time elapsed in that state. For
example, the state sequence s1, s1, s1, s2, s3, s3 would be represented as (s1, 1), (s1, 2), (s1, 3), (s2, 1), (s3, 1), (s3, 2).

Answer all of the following in terms of the parameters P1(X1), PD(d), PT (Xj+1|Xj), PE(Yi|Xi), k (total number
of possible states), N and M (max duration).

(i) What is P (Z1)?

P (x1, t) =

{
P1(x1) if t = 1

0 o.w.
(3)
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(ii) What is P (Zi+1|Zi)? Hint: You will need to break this into cases where the transition function will behave
differently.

P (Xi+1, ti+1|Xi, ti) =


PD(d ≥ ti + 1|d ≥ ti) when Xi+1 = Xi and ti+1 = ti + 1 and ti+1 ≤ M

PT (Xi+1|Xi)PD(d = ti|d ≥ ti) when Xi+1 ̸= Xi and ti+1 = 1

0 o.w.

Where PD(d ≥ ti + 1|d ≥ ti) = PD(d ≥ ti + 1)/PD(d ≥ ti).

Being in Xi, ti, we know that d was drawn d ≥ ti. Conditioning on this fact, we have two choices, if d > ti then the
next state is Xi+1 = Xi, and if d = ti then Xi+1 ̸= Xi drawn from the transition distribution and ti+1 = 1.
(4)

(iii) What is P (Yi|Zi)?
p(Yi|Xi, ti) = PE(Yi|Xi)

(e) In this question we explore how to write an algorithm to compute P (XN |y1, · · · , yN ) using the particular
structure of this process.

Write P (Xt|y1, · · · , yt−1) in terms of other factors. Construct an answer by checking the correct boxes below:

P (Xt|y1, · · · , yt−1) = (i) (ii) (iii)

(i)  ∑k
i=1

∑M
d=1

∑M
d′=1

# ∑k
i=1

∑M
d=1

# ∑k
i=1

# ∑M
d=1

(ii) # P (Zt = (Xt, d)|Zt−1 = (si, d))

# P (Xt|Xt−1 = si)

# P (Xt|Xt−1 = sd)

 P (Zt = (Xt, d
′)|Zt−1 = (si, d))

(iii) # P (Zt−1 = (sd, i)|y1, · · · , yt−1)

# P (Xt−1 = sd|y1, · · · , yt−1)

 P (Zt−1 = (si, d)|y1, · · · , yt−1)

# P (Xt−1 = si|y1, · · · , yt−1)

(iv) Now we would like to include the evidence yt in the picture. What would be the running time of each
update of the whole table P (Xt|y1, · · · , yt)?. Assume tables corresponding to any factors used in (i),
(ii), (iii) have already been computed.

# O(k2)

# O(k2M)

 O(k2M2)

# O(kM)

Note: Computing P (XN |y1, · · · , yN ) will take time N× your answer in (iv).

Just the running time for filtering when the state space is the space of pairs (xi, ti),

Given Bt−1(z), the step p(zt|y1, · · · , yt−1) can be done in time kM . (size of the statespace for z).

The computation to include the yt evidence can be done in O(1) per zt.

Therefore each update to the table per evidence point will take (Mk)2. So it is O((Mk)2).

Using N steps, the whole algorithm will take O(Nk2M2) to compute P (XN |Y1, · · · , YN ).
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(v) Describe an update rule to compute P (Xt|y1, · · · , yt−1) that is faster than the one you discovered in parts
(i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions Zt−1 → Zt.

Answer is O(k2M + kM).

The answer from the previous section is:

P (Xt|y1, · · · , yt−1) =

k∑
i=1

M∑
d=1

M∑
d′=1

P (Zt = (Xt, d
′)|Zt−1 = (si, d))P (Zt−1 = (si, d)|y1, · · · , yt−1) (5)

To compute this value we only really need to loop through those transitions P (Zt = (Xt, d
′)|Zt−1 = (si, d))

that can happen with nonzero probability.

For all Xt = s we need to sum over all factors of the form P (Zt = (s, d′)|Zt−1 = (si, d))P (Xt−1 =
si|yi, · · · , yt−1). For a fixed s the factor P (Zt = (Xt, d

′)|Zt−1 = (si, d)) can be nonzero only when si = s
and d′ = d+ 1 (M tuples). And when si ̸= s and d′ = 1 and d = 1, · · · ,M (kM tuples).

Since this needs to be performed for all k possible values of s, the answer to update the whole table is
O(k2M + kM).
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