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1 Particle Filtering Apprenticeship

We are observing an agent’s actions in an MDP and are trying to determine which out of a set {my,...,m,} the
agent is following. Let the random variable II take values in that set and represent the policy that the agent is acting
under. We consider only stochastic policies, so that A; is a random variable with a distribution conditioned on Sy
and II. As in a typical MDP, S; is a random variable with a distribution conditioned on S;_; and A;_;. The full
Bayes net is shown below.

The agent acting in the environment knows what state it is currently in (as is typical in the MDP setting). Unfor-
tunately, however, we, the observer, cannot see the states S;. Thus we are forced to use an adapted particle filtering
algorithm to solve this problem. Concretely, we will develop an efficient algorithm to estimate P(IT | aj.¢).

(a) The Bayes net for part (a) is (i) Select all of the following that are guaranteed to
be true in this model for ¢ > 3:

Sy 1L Si—o | S

St AL S o | Si—1, A1
S, 1L Sy |0

Sy AL S o | T, A1

Sy 1L Sy o | I1, 54

Sp AL S o | T1,8; 1, A1

oooggn

None of the above
We will compute our estimate for P(II | a1.;) by coming up with a recursive algorithm for computing

P(I1,S; | a1.+). (We can then sum out S; to get the desired distribution; in this problem we ignore that step.)

(ii) Write a recursive expression for P(IL, Sy | a1.) in terms of the CPTs in the Bayes net above.

P<H7 St | al:t) X

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s;
and a potential policy ;.

(iii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in
the boxes with the correct values so that the algorithm will approximate P(IL, S | a1.¢).

1. Elapse time: for each particle (s, 7;), sample a successor sy11 from

The policy 7’ in the new particle is

2. Incorporate evidence: To each new particle (sy11,7’), assign weight

3. Resample particles from the weighted particle distribution.

(b) We now observe the acting agent’s actions and rewards at each time step (but we still don’t know the states).
Unlike the MDPs in lecture, here we use a stochastic reward function, so that R; is a random variable with a
distribution conditioned on S; and A;. The new Bayes net is given by



Notice that the observed rewards do in fact give use-
ful information since d-separation does not give that
Ry ILTIT| Ayy.

(i) Give an active path connecting R; and II when
Ay, are observed. Your answer should be an
ordered list of nodes in the graph, for example
“Sty Str1, A, IL A1, Ry 17

(ii) Write a recursive expression for P(II, S; | a1.¢,71.¢) in terms of the CPTs in the Bayes net above.

P(HaSt | al:tﬂ"l:t) X

(c) We now observe only the sequence of rewards and no
longer observe the sequence of actions. The new Bayes
net is shown on the right.

(i) Write a recursive expression for P(IL, Sy, A; | r1.¢) in terms of the CPTs in the Bayes net above.

P(H7StaAt | rl:t) X

We now try to adapt particle filtering to approximate this value. Each particle will contain a single state s, a
single action a;, and a potential policy ;.

(ii) The following is pseudocode for the body of the loop in our adapted particle filtering algorithm. Fill in
the boxes with the correct values so that the algorithm will approximate P(II, Sy, A | 71.¢)-

1. Elapse time: for each particle (s¢, as, 7;), sample a successor state ;41 from

Then, sample a successor action a;41 from

The policy 7’ in the new particle is

2. Incorporate evidence: To each new particle (S¢41,art1, ), assign weight

3. Resample particles from the weighted particle distribution.



Q2. HMMs

Consider a process where there are transitions among a finite set of states sq,---,s; over time steps i =1,--- , N.
Let the random variables X1, --- , Xy represent the state of the system at each time step and be generated as follows:

e Sample the initial state s from an initial distribution P;(X7), and set ¢ = 1

e Repeat the following:

1. Sample a duration d from a duration distribution Pp over the integers {1,---, M}, where M is the
maximum duration.

2. Remain in the current state s for the next d time steps, i.e., set
Ty =Tj41 =+ = Titd—1 =S (1)

3. Sample a successor state s’ from a transition distribution Pr(X:|X;—1 = s) over the other states s’ # s
(so there are no self transitions)

4. Assigni=1+d and s = 5.

This process continues indefinitely, but we only observe the first N time steps.

(a) Assuming that all three states s1, sq, s3 are different, what is the probability of the sample sequence s1, $1, S2, S2, S2, S3, 837
Write an algebraic expression. Assume M > 3.

At each time step i we observe a noisy version of the state X; that we denote Y; and is produced via a conditional
distribution Pg(Y;|X;).

(b) Only in this subquestion assume that N > M. Let X;,--- ,Xx and Y3, -, Yy random variables defined as
above. What is the maximum index i < N — 1 so that X; 1l Xn|X;, Xiy1,- -, Xn_1 is guaranteed?
(c) Only in this subquestion, assume the max duration M = 2, and Pp uniform over {1,2} and each z; is

in an alphabet {a,b}. For (Xi,Xs, X3, X4, X5,Y7,Y2,Y3, Yy, Y5) draw a Bayes Net over these 10 random
variables with the property that removing any of the edges would yield a Bayes net inconsistent with the given
distribution.

(d) In this part we will explore how to write the described process as an HMM with an extended state space. Write
the states z = (s,t) where s is a state of the original system and ¢ represents the time elapsed in that state. For
example, the state sequence s1, s1, $1, S2, 83, 83 would be represented as (s1, 1), (s1,2), (s1,3), (s2, 1), (s3, 1), (s3,2).
Answer all of the following in terms of the parameters Py (X1), Pp(d), Pr(X,+1|X;), Pe(Yi|X;), k (total number
of possible states), N and M (max duration).

(i) What is P(Z1)?



P(!El,tl) =

(ii) What is P(Z;+1|Z;)? Hint: You will need to break this into cases where the transition function will behave
differently.

P(Xit1,tiv1 | Xivts) =

(iii) What is P(Y;|Z:)?

P(Y; | Xi,ti) =
(e) In this question we explore how to write an algorithm to compute P(Xn|y1,- - ,yn) using the particular
structure of this process.
Write P(X¢|y1,- -+ ,y:—1) in terms of other factors. Construct an answer by checking the correct boxes below:
P(Xelyr, -+ ye-1) = () (ii) (iii)

k
Zi:l

M
Zd:l

() O Y il Yo
O Y vl

O O

(ii) O P(Zt = (Xt,d)‘Zt,]_ = (Sz,d)) O P(Xt|Xt,1 = Sd)
O P(X¢| X1 =si) O P2 = (X, d)|Zi-1 = (s1,d))
(iii) O P(Zi—1 = (sa,9)|y1, -+ s ye—1) O P(Zi—1 = (s, d)|y1, -+, yi—1)
O P(Xi—1=saly, y—1) O P(Xi—1 = silyr, -+, ye-1)

(iv) Now we would like to include the evidence y; in the picture. What would be the running time of each
update of the whole table P(X¢|y1, - ,v:)?. Assume tables corresponding to any factors used in (i),
(ii), (iii) have already been computed.

O 0(k?) O O(k*M?)
O O(k*M) O O(kM)
Note: Computing P(Xn|y1,- - ,yn) will take time N x your answer in (iv).
(v) Describe an update rule to compute P(X¢|y1, - ,y:—1) that is faster than the one you discovered in parts

(i), (ii), (iii). Specify its running time. Hint: Use the structure of the transitions Z; 1 — Z;.



