
CS 188
Summer 2023 Discussion 5C Solutions
Q1. How do you Value It(eration)?
(a) Fill out the following True/False questions.

(i) True # False: Let A be the set of all actions and S the set of states for some MDP. Assuming
that |A| ≪ |S|, one iteration of value iteration is generally faster than one iteration of policy iteration that
solves a linear system during policy evaluation. One iteration of value iteration is O(|S|2|A|), whereas one
iteration of policy iteration is O(|S|3), so value iteration is generally faster when |A| ≪ |S|

(ii) # True False: For any MDP, changing the discount factor does not affect the optimal policy
for the MDP. Consider an infinite horizon setting where we have 2 states A,B, where we can alternate
between A and B forever, gaining a reward of 1 each transition, or exit from B with a reward of 100.
In the case that γ = 1, the optimal policy is to forever oscillate between A and B. If γ = 1

2 , then it is
optimal to exit.

The following problem will take place in various instances of a grid world MDP. Shaded cells represent walls. In all
states, the agent has available actions ↑, ↓, ←, →. Performing an action that would transition to an invalid state
(outside the grid or into a wall) results in the agent remaining in its original state. In states with an arrow coming
out, the agent has an additional action EXIT . In the event that the EXIT action is taken, the agent receives the
labeled reward and ends the game in the terminal state T . Unless otherwise stated, all other transitions receive no
reward, and all transitions are deterministic.

For all parts of the problem, assume that value iteration begins with all states initialized to zero, i.e., V0(s) = 0 ∀s.
Let the discount factor be γ = 1

2 for all following parts.

(b) Suppose that we are performing value iteration on the grid world MDP below.

(i) Fill in the optimal values for A and B in the given boxes.

V ∗(A) :
25

V ∗(B) :

25
8

(ii) After how many iterations k will we have Vk(s) = V ∗(s) for all states s? If it never occurs, write “never”.
Write your answer in the given box.

6

(iii) Suppose that we wanted to re-design the reward function. For which of the following new reward functions
would the optimal policy remain unchanged? Let R(s, a, s′) be the original reward function.

1

■ R1(s, a, s
′) = 10R(s, a, s′)

■ R2(s, a, s
′) = 1 +R(s, a, s′)

■ R3(s, a, s
′) = R(s, a, s′)2

□ R4(s, a, s
′) = −1

□ None

R1: Scaling the reward function does not affect the optimal policy, as it scales all Q-values by 10, which retains
ordering
R2: Since reward is discounted, the agent would get more reward exiting then infinitely cycling between states
R3: The only positive reward remains to be from exiting state +100 and +1, so the optimal policy doesn’t
change
R4: With negative reward at every step, the agent would want to exit as soon as possible, which means the
agent would not always exit at the bottom-right square.

(c) For the following problem, we add a new state in which we can take the EXIT action with a reward of +x.

(i) For what values of x is it guaranteed that our optimal policy π∗ has π∗(C) = ←? Write ∞ and −∞ if
there is no upper or lower bound, respectively. Write the upper and lower bounds in each respective box.

50
< x <

∞

We go left if Q(C,←) > Q(C,→). Q(C,←) = 1
8x, and Q(C,→) = 100

16 . Solving for x, we get x > 50.

(ii) For what values of x does value iteration take the minimum number of iterations k to converge to V ∗

for all states? Write ∞ and −∞ if there is no upper or lower bound, respectively. Write the upper and
lower bounds in each respective box.

50 ≤ x ≤ 200

The two states that will take the longest for value iteration to become non-zero from either +x or +100, are
states C, and D, where D is defined as the state to the right of C. C will become nonzero at iteration 4 from
+x, and D will become nonzero at iteration 4 from +100. We must bound x so that the optimal policy at D
does not choose to go to +x, or else value iteration will take 5 iterations. Similar reasoning for D and +x.
Then our inequalities are 1

8x ≥
100
16 and 1

16x ≤
100
8 . Simplifying, we get the following bound on x: 50 ≤ x ≤ 200

(iii) Fill the box with value k, the minimum number of iterations until Vk has converged to V ∗ for all states.

4

See the explanation for the part above

2

Q2. MDPs: Dice Bonanza
A casino is considering adding a new game to their collection, but need to analyze it before releasing it on their floor.
They have hired you to execute the analysis. On each round of the game, the player has the option of rolling a fair
6-sided die. That is, the die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the
player must roll the very first round. Each time the player rolls the die, the player has two possible actions:

1. Stop: Stop playing by collecting the dollar value that the die lands on, or

2. Roll: Roll again, paying another 1 dollar.

Having taken CS 188, you decide to model this problem using an infinite horizon Markov Decision Process (MDP).
The player initially starts in state Start, where the player only has one possible action: Roll. State si denotes the
state where the die lands on i. Once a player decides to Stop, the game is over, transitioning the player to the End
state.

(a) In solving this problem, you consider using policy iteration. Your initial policy π is in the table below. Evaluate
the policy at each state, with γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

V π(s) 3 3 3 4 5 6

We have that si = i for i ∈ {3, 4, 5, 6}, since the player will be awarded no further rewards according to the
policy. From the Bellman equations, we have that V (s1) = −1 + 1

6 (V (s1) + V (s2) + 3 + 4 + 5 + 6) and that
V (s2) = −1 + 1

6 (V (s1) + V (s2) + 3 + 4 + 5 + 6). Solving this linear system yields V (s1) = V (s2) = 3.

(b) Having determined the values, perform a policy update to find the new policy π′. The table below shows the
old policy π and has filled in parts of the updated policy π′ for you. If both Roll and Stop are viable new
actions for a state, write down both Roll/Stop. In this part as well, we have γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

π′(s) Roll Roll Roll/Stop Stop Stop Stop

For each si in part (a), we compare the values obtained via Rolling and Stopping. The value of Rolling for
each state si is −1 + 1

6 (3 + 3 + 3 + 4 + 5 + 6) = 3. The value of Stopping for each state si is i. At each state
si, we take the action that yields the largest value; so, for s1 and s2, we Roll, and for s4 and s5, we stop. For
s3, we Roll/Stop, since the values from Rolling and Stopping are equal.

3

(c) Is π(s) from part (a) optimal? Explain why or why not.
Yes, the old policy is optimal. Looking at part (b), there is a tie between 2 equally good policies that policy
iteration considers employing. One of these policies is the same as the old policy. This means that both
new policies are as equally good as the old policy, and policy iteration has converged. Since policy iteration
converges to the optimal policy, we can be sure that π(s) from part (a) is optimal.

(d) Suppose that we were now working with some γ ∈ [0, 1) and wanted to run value iteration. Select the one
statement that would hold true at convergence, or write the correct answer next to Other if none of the options
are correct.

V ∗(si) = max

−1 + i

6
,
∑
j

γV ∗(sj)


V ∗(si) = max

i ,
1

6
·

−1 +∑
j

γV ∗(sj)


V ∗(si) = max

−1

6
+ i ,

∑
j

γV ∗(sj)


V ∗(si) = max

i , −1

6
+
∑
j

γV ∗(sj)


V ∗(si) =

1

6
·
∑
j

max {i , −1 + γV ∗(sj)}

V ∗(si) =
1

6
·
∑
j

max

{
−1 + i ,

∑
k

V ∗(sj)

}

V ∗(si) =
∑
j

max

{
−1 + i ,

1

6
· γV ∗(sj))

}

V ∗(si) =
∑
j

max

{
i

6
, −1 + γV ∗(sj)

}

 V ∗(si) = max

i , −1 + γ

6

∑
j

V ∗(sj)


V ∗(si) =

∑
j

max

{
i , −1

6
+ γV ∗(sj)

}

V ∗(si) =
∑
j

max

{
−i
6

, −1 + γV ∗(sj)

}

Other

4

