1 Maximum Likelihood Estimation

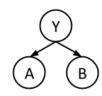
Recall that a Geometric distribution is a defined as the number of Bernoulli trials needed to get one success. $P(X=k)=p(1-p)^{k-1}$. We observe the following samples from a Geometric distribution: $x_1=5, x_2=8, x_3=3, x_4=5, x_5=7$

What is the maximum likelihood estimate for p?

2 Naive Bayes

In this question, we will train a Naive Bayes classifier to predict class labels Y as a function of input features A and B. Y, A, and B are all binary variables, with domains 0 and 1. We are given 10 training points from which we will estimate our distribution.

	A	1	1	1	1	0	1	0	1	1	1
ĺ	B	1	0	0	1	1	1	1	0	1	1
ĺ	Y	1	1	0	0	0	1	1	0	0	0



(a) What are the maximum likelihood estimates for the tables P(Y), P(A|Y), and P(B|Y)?

	Y	P(Y)
Ī	0	
Ī	1	

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	

B	Y	P(B Y)
0	0	
1	0	
0	1	
1	1	

- (b) Consider a new data point (A = 1, B = 1). What label would this classifier assign to this sample?
- (c) Let's use Laplace Smoothing to smooth out our distribution. Compute the new distribution for P(A|Y) given Laplace Smoothing with k=2.

A	Y	P(A Y)
0	0	
1	0	
0	1	
1	1	

Q3. Machine Learning: Potpourri

- (a) What it the **minimum** number of parameters needed to fully model a joint distribution $P(Y, F_1, F_2, ..., F_n)$ over label Y and n features F_i ? Assume binary class where each feature can possibly take on k distinct values.
- (b) Under the Naive Bayes assumption, what is the minimum number of parameters needed to model a joint distribution $P(Y, F_1, F_2, ..., F_n)$ over label Y and n features F_i ? Assume binary class where each feature can take on k distinct values.

(c)		bect that you are overfitting with your Naive Bayes k in Laplace Smoothing?	with	Laplace Smoothing. How would you adjust		
	\bigcirc	Increase k	\bigcirc	Decrease k		
(d)	While us	ing Naive Bayes with Laplace Smoothing, increasing	g the	e strength k in Laplace Smoothing can:		
		Increase training error		Decrease training error		
		Increase validation error		Decrease validation error		
(e)	It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in it feature space.					
	\bigcirc	True	\bigcirc	False		
(f)	If the per	receptron algorithm terminates, then it is guaranteed to	to fine	d a max-margin separating decision boundary.		
	\bigcirc	True	\bigcirc	False		
(g)		y perceptron where the initial weight vector is $\vec{0}$, to tion of the training data feature vectors.	the fi	nal weight vector can be written as a linear		
	\bigcirc	True	\bigcirc	False		
(h)	For binar	ry class classification, logistic regression produces a	linea	r decision boundary.		
	\bigcirc	True	\bigcirc	False		
(i)	In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.					
	\bigcirc	True	\bigcirc	False		
(j)		n a linear classifier on 1,000 training points and discollowing, if done in isolation, has a good chance of in				
		Add novel features Train on more	re dat	ta		
(k)		try training a neural network but you find that the s, if done in isolation, has a good chance of improving				
		Add more hidden layers		Add more units to the hidden layers		