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Summer 2023 Discussion 7C Solutions

Q1. Deep Learning

(a) Perform forward propagation on the neural network below for = 1 by filling in the values in the table. Note
that (i), ..., (vil) are outputs after performing the appropriate operation as indicated in the node.

(1) | () | (D) | (v) | (v) | (vi) | (viD)

2 3 4 5 4 3 5

(vii)

(b) [Optional] Below is a neural network with weights a,b, ¢, d, e, f. The inputs are z; and xs.
The first hidden layer computes r; = max(c- z1 + e - 22,0) and ro = max(d - z1 + f - x2,0).
The second hidden layer computes s; = m and sg = m.

The output layer computes y = s1 + so. Note that the weights a, b, c,d, e, f are indicated along the edges of

the neural network here.

Suppose the network has inputs z1 = 1,z = —1.
The weight values are a =1,b=1,c=4,d=1,e=2, f =2.
Forward propagation then computes 1y = 2,79 = 0,57 = 0.9, 52 = 0.5,y = 1.4. Note: some values are rounded.

Using the values computed from forward propagation, use backpropagation to numerically calculate
the following partial derivatives. Write your answers as a single number (not an expression). You do not need
a calculator. Use scratch paper if needed.

Hint: For g(z) the derivative is 22 = g(2)(1 — g(2)).
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(c) Below are two plots with horizontal axis x; and vertical axis 25 containing data labelled x and e. For each
plot, we wish to find a function f(z1,22) such that f(z1,22) > 0 for all data labelled x and f(z1,22) < 0 for
all data labelled e.

Below each plot is the function f(z1,2) for that specific plot. Complete the expressions such that all the data
is labelled correctly. If not possible, mark “No valid combination”.
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There are two possible solutions:

f(z1,29) = max(xy, —21) — 1

flxy,x0) = max(—zq,21) — 1
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There are four possible solutions:

flx1,22) = xo — max(zy, —21)
flxy,20) = xo — max(—x1,21)
f(x1,20) = —max(xy — @9, —x1 — 2)
f(xe,0) = —max(—x1 — x2, 11 — 2)



Y Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single
real-valued input feature with an associated class y* (0 or 1). There are two weight parameters w; and wq, and
non-linearity functions g; and g (to be defined later, below). The network will output a value as between 0 and 1,
representing the probability of being in class 1. We will be using a loss function Loss (to be defined later, below),
to compare the prediction as with the true class y*.

Loss

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and as in terms of
the node’s input values:

Z1 = X kW

ar = g1(z1)
Z9 = Q1 * W2
az = 92(22)

2. Compute the loss Loss(as,y*) in terms of the input x, weights w;, and activation functions g;:

Recursively substituting the values computed above, we have:

Loss(az,y™) = Loss(gz2(wa * g1 (w1 * )),y")

3. [Optional] Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive
9Loss Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the

ow
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful;

you may use any of those variables.)
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4. [Optional] Suppose the loss function is quadratic, Loss(as,y*) = 3(az —y*)?, and g1 and g» are both sigmoid
functions g(z) = H_% (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that 8%(22) g(2)(1 —g(2)) for the sigmoid function, write %LT"?‘

in terms of the values from the forward pass, y*, a1, and as:




First we’ll compute the partial derivatives at each node:
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Now we can plug into the chain rule from part 3:
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= (a2 —y*) xaz(l —ag) x a;

5. [Optional] Now use the chain rule to derive 2k as a product of partial derivatives at each node used in the
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chain rule: '
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6. [Optional] Finally, write aaLﬁs in terms of x,y*, w;, a;, z;: The partial derivatives at each node (in addition

to the ones we computed in Part 4) are:
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Plugging into the chain rule from Part 5 gives:
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7. [Optional] What is the gradient descent update for w; with step-size « in terms of the values computed above?

wy = wy —afay —y") xax(l —ag) xwyxar(l —ay)



