
CS 188
Summer 2023 Discussion 7C Solutions
Q1. Deep Learning
(a) Perform forward propagation on the neural network below for x = 1 by filling in the values in the table. Note

that (i), . . . , (vii) are outputs after performing the appropriate operation as indicated in the node.

(i) (ii) (iii) (iv) (v) (vi) (vii)

2 3 4 5 4 3 5

x

∗2

∗3

∗4

∑
max

min

max

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(b) [Optional] Below is a neural network with weights a, b, c, d, e, f . The inputs are x1 and x2.
The first hidden layer computes r1 = max(c · x1 + e · x2, 0) and r2 = max(d · x1 + f · x2, 0).
The second hidden layer computes s1 = 1

1+exp(−a·r1) and s2 = 1
1+exp(−b·r2) .

The output layer computes y = s1 + s2. Note that the weights a, b, c, d, e, f are indicated along the edges of
the neural network here.

Suppose the network has inputs x1 = 1, x2 = −1.
The weight values are a = 1, b = 1, c = 4, d = 1, e = 2, f = 2.
Forward propagation then computes r1 = 2, r2 = 0, s1 = 0.9, s2 = 0.5, y = 1.4. Note: some values are rounded.

x1

x2

r1

r2

s1

s2

y

a

b

c

d

e

f

Using the values computed from forward propagation, use backpropagation to numerically calculate
the following partial derivatives. Write your answers as a single number (not an expression). You do not need
a calculator. Use scratch paper if needed.
Hint: For g(z) = 1

1+exp(−z) , the derivative is ∂g
∂z = g(z)(1− g(z)).

∂y
∂a

∂y
∂b

∂y
∂c

∂y
∂d

∂y
∂e

∂y
∂f

0.18 0 0.09 0 −0.09 0

1

∂y

∂a
=

∂y

∂s1

∂s1
∂a

= 1 · ∂g(a · r1)
∂a

= r1 · g(a · r1)(1− g(a · r1))
= r1 · s1(1− s1)

= 2 · 0.9 · (1− 0.9)

= 0.18

∂y

∂b
=

∂y

∂s2

∂s2
∂b

= 1 · ∂g(b · r2)
∂b

= r2 · g(b · r2)(1− g(b · r2))
= r2 · s2(1− s2)

= 0 · 0.5(1− 0.5)

= 0

∂y

∂c
=

∂y

∂s1

∂s1
∂r1

∂r1
∂c

= 1 · [a · g(a · r1)(1− g(a · r1))] · x1

= [a · s1(1− s1)] · x1

= [1 · 0.9(1− 0.9)] · 1
= 0.09

∂y

∂d
=

∂y

∂s2

∂s2
∂r2

∂r2
∂d

=
∂y

∂s2

∂s2
∂r2
· 0

= 0

∂y

∂e
=

∂y

∂s1

∂s1
∂r1

∂r1
∂e

= 1 · [a · g(a · r1)(1− g(a · r1))] · x2

= [a · s1(1− s1)] · x2

= [1 · 0.9(1− 0.9)] · −1
= −0.09

∂y

∂f
=

∂y

∂s2

∂s2
∂r2

∂r2
∂f

=
∂y

∂s2

∂s2
∂r2
· 0

= 0

2

(c) Below are two plots with horizontal axis x1 and vertical axis x2 containing data labelled × and •. For each
plot, we wish to find a function f(x1, x2) such that f(x1, x2) ≥ 0 for all data labelled × and f(x1, x2) < 0 for
all data labelled •.
Below each plot is the function f(x1, x2) for that specific plot. Complete the expressions such that all the data
is labelled correctly. If not possible, mark “No valid combination”.

[subfigure]labelformat=empty

f(x1, x2) = max((i) + (ii) , (iii)+ (iv)) + (v)

(i) x1 # −x1 # 0
(ii) # x2 # −x2 0
(iii) # x1 −x1 # 0
(iv) # x2 # −x2 0
(v) # 1 −1 # 0
No valid combination

There are two possible solutions:

f(x1, x2) = max(x1,−x1)− 1

f(x1, x2) = max(−x1, x1)− 1

[subfigure]labelformat=empty

f(x1, x2) = (vi)−max((vii)+(viii), (ix)+ (x))

(vi) x2 # −x2 # 0
(vii) x1 # −x1 # 0
(viii) # x2 # −x2 0
(ix) # x1 −x1 # 0
(x) # x2 # −x2 0
No valid combination

There are four possible solutions:

f(x1, x2) = x2 −max(x1,−x1)

f(x1, x2) = x2 −max(−x1, x1)

f(x1, x2) = −max(x1 − x2,−x1 − x2)

f(x2, x2) = −max(−x1 − x2, x1 − x2)

3

2 Neural Nets
Consider the following computation graph for a simple neural network for binary classification. Here x is a single
real-valued input feature with an associated class y∗ (0 or 1). There are two weight parameters w1 and w2, and
non-linearity functions g1 and g2 (to be defined later, below). The network will output a value a2 between 0 and 1,
representing the probability of being in class 1. We will be using a loss function Loss (to be defined later, below),
to compare the prediction a2 with the true class y∗.

x

w1

∗ g1

w2

∗ g2

y∗

Loss
z1 → a1 → z2 → a2 →

1. Perform the forward pass on this network, writing the output values for each node z1, a1, z2 and a2 in terms of
the node’s input values:

z1 = x ∗ w1

a1 = g1(z1)

z2 = a1 ∗ w2

a2 = g2(z2)

2. Compute the loss Loss(a2, y
∗) in terms of the input x, weights wi, and activation functions gi:

Recursively substituting the values computed above, we have:

Loss(a2, y
∗) = Loss(g2(w2 ∗ g1(w1 ∗ x)), y∗)

3. [Optional] Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive
∂Loss
∂w2

. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the
node’s output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful;
you may use any of those variables.)

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

4. [Optional] Suppose the loss function is quadratic, Loss(a2, y
∗) = 1

2 (a2− y∗)2, and g1 and g2 are both sigmoid
functions g(z) = 1

1+e−z (note: it’s typically better to use a different type of loss, cross-entropy, for classification
problems, but we’ll use this to make the math easier).

Using the chain rule from Part 3, and the fact that ∂g(z)
∂z = g(z)(1− g(z)) for the sigmoid function, write ∂Loss

∂w2

in terms of the values from the forward pass, y∗, a1, and a2:

4

First we’ll compute the partial derivatives at each node:

∂Loss

∂a2
= (a2 − y∗)

∂a2
∂z2

=
∂g2(z2)

∂z2
= g2(z2)(1− g2(z2)) = a2(1− a2)

∂z2
∂w2

= a1

Now we can plug into the chain rule from part 3:

∂Loss

∂w2
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂w2

= (a2 − y∗) ∗ a2(1− a2) ∗ a1

5. [Optional] Now use the chain rule to derive ∂Loss
∂w1

as a product of partial derivatives at each node used in the
chain rule:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

6. [Optional] Finally, write ∂Loss
∂w1

in terms of x, y∗, wi, ai, zi: The partial derivatives at each node (in addition
to the ones we computed in Part 4) are:

∂z2
∂a1

= w2

∂a1
∂z1

=
∂g1(z1)

∂z1
= g1(z1)(1− g1(z1)) = a1(1− a1)

∂z1
∂a1

= x

Plugging into the chain rule from Part 5 gives:

∂Loss

∂w1
=

∂Loss

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w1

= (a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

7. [Optional] What is the gradient descent update for w1 with step-size α in terms of the values computed above?

w1 ← w1 − α(a2 − y∗) ∗ a2(1− a2) ∗ w2 ∗ a1(1− a1) ∗ x

5

