Q1. Deep Learning

(a) Perform forward propagation on the neural network below for $x=1$ by filling in the values in the table. Note that (i),..., (vii) are outputs after performing the appropriate operation as indicated in the node.

(i)	(ii)	(iii)	(iv)	(v)	(vi)	(vii)

(b) [Optional] Below is a neural network with weights a, b, c, d, e, f. The inputs are x_{1} and x_{2}.

The first hidden layer computes $r_{1}=\max \left(c \cdot x_{1}+e \cdot x_{2}, 0\right)$ and $r_{2}=\max \left(d \cdot x_{1}+f \cdot x_{2}, 0\right)$.
The second hidden layer computes $s_{1}=\frac{1}{1+\exp \left(-a \cdot r_{1}\right)}$ and $s_{2}=\frac{1}{1+\exp \left(-b \cdot r_{2}\right)}$.
The output layer computes $y=s_{1}+s_{2}$. Note that the weights a, b, c, d, e, f are indicated along the edges of the neural network here.
Suppose the network has inputs $x_{1}=1, x_{2}=-1$.
The weight values are $a=1, b=1, c=4, d=1, e=2, f=2$.
Forward propagation then computes $r_{1}=2, r_{2}=0, s_{1}=0.9, s_{2}=0.5, y=1.4$. Note: some values are rounded.

Using the values computed from forward propagation, use backpropagation to numerically calculate the following partial derivatives. Write your answers as a single number (not an expression). You do not need a calculator. Use scratch paper if needed.
Hint: For $g(z)=\frac{1}{1+\exp (-z)}$, the derivative is $\frac{\partial g}{\partial z}=g(z)(1-g(z))$.

$\frac{\partial y}{\partial a}$	$\frac{\partial y}{\partial b}$	$\frac{\partial y}{\partial c}$	$\frac{\partial y}{\partial d}$	$\frac{\partial y}{\partial e}$	$\frac{\partial y}{\partial f}$

(c) Below are two plots with horizontal axis x_{1} and vertical axis x_{2} containing data labelled \times and \bullet. For each plot, we wish to find a function $f\left(x_{1}, x_{2}\right)$ such that $f\left(x_{1}, x_{2}\right) \geq 0$ for all data labelled \times and $f\left(x_{1}, x_{2}\right)<0$ for all data labelled \bullet.

Below each plot is the function $f\left(x_{1}, x_{2}\right)$ for that specific plot. Complete the expressions such that all the data is labelled correctly. If not possible, mark "No valid combination".
[subfigure]labelformat=empty

$$
f\left(x_{1}, x_{2}\right)=\max (\underline{(\mathbf{i})}+\underline{(\mathrm{ii})}, \underline{(\mathrm{iii})}+\underline{(\mathrm{iv})})+(\mathbf{v})
$$

No valid combination
[subfigure]labelformat=empty

$f\left(x_{1}, x_{2}\right)=\underline{(\mathbf{v i})}-\max (\underline{(\mathbf{v i i})}+(\underline{\text { viii }}), \underline{(\mathbf{i x})}+\underline{(\mathrm{x})})$

No valid combination

2 Neural Nets

Consider the following computation graph for a simple neural network for binary classification. Here x is a single real-valued input feature with an associated class $y^{*}(0$ or 1$)$. There are two weight parameters w_{1} and w_{2}, and non-linearity functions g_{1} and g_{2} (to be defined later, below). The network will output a value a_{2} between 0 and 1 , representing the probability of being in class 1 . We will be using a loss function Loss (to be defined later, below), to compare the prediction a_{2} with the true class y^{*}.

1. Perform the forward pass on this network, writing the output values for each node z_{1}, a_{1}, z_{2} and a_{2} in terms of the node's input values:
2. Compute the loss $\operatorname{Loss}\left(a_{2}, y^{*}\right)$ in terms of the input x, weights w_{i}, and activation functions g_{i} :
3. [Optional] Now we will work through parts of the backward pass, incrementally. Use the chain rule to derive $\frac{\partial L o s s}{\partial w_{2}}$. Write your expression as a product of partial derivatives at each node: i.e. the partial derivative of the node's output with respect to its inputs. (Hint: the series of expressions you wrote in part 1 will be helpful; you may use any of those variables.)
4. [Optional] Suppose the loss function is quadratic, $\operatorname{Loss}\left(a_{2}, y^{*}\right)=\frac{1}{2}\left(a_{2}-y^{*}\right)^{2}$, and g_{1} and g_{2} are both sigmoid functions $g(z)=\frac{1}{1+e^{-z}}$ (note: it's typically better to use a different type of loss, cross-entropy, for classification problems, but we'll use this to make the math easier).
Using the chain rule from Part 3, and the fact that $\frac{\partial g(z)}{\partial z}=g(z)(1-g(z))$ for the sigmoid function, write $\frac{\partial L o s s}{\partial w_{2}}$ in terms of the values from the forward pass, y^{*}, a_{1}, and a_{2} :
5. [Optional] Now use the chain rule to derive $\frac{\partial L o s s}{\partial w_{1}}$ as a product of partial derivatives at each node used in the chain rule:
6. [Optional] Finally, write $\frac{\partial \operatorname{Loss}}{\partial w_{1}}$ in terms of $x, y^{*}, w_{i}, a_{i}, z_{i}$:
7. [Optional] What is the gradient descent update for w_{1} with step-size α in terms of the values computed above?
