CS 188: Artificial Intelligence

Search Problems

(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

Last time...

- Utilities and Rationality
- Rational Preferences
- MEU Principle

$$
\begin{aligned}
& \text { Orderability: }(A>B) \vee(B>A) \vee(A \sim B) \\
& \text { Transitivity: }(A>B) \wedge(B>C) \Rightarrow(A>C) \\
& \text { Continuity: }(A>B>C) \Rightarrow \exists p[p, A ; 1-\mathrm{p}, C] \sim B \\
& \text { Substitutability: }(A \sim B) \Rightarrow[p, A ; 1-\mathrm{p}, C] \sim[p, B ; 1-\mathrm{p}, C] \\
& \text { Monotonicity: }(A>B) \Rightarrow \\
& \qquad(p \geq q) \Leftrightarrow[p, A ; 1-\mathrm{p}, B] \geq[q, A ; 1-\mathrm{q}, B]
\end{aligned}
$$

Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
- Depth-First Search
- Breadth-First Search

Agents that Plan

Reflex Agents

- Reflex agents:
- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Consider how the world IS
- Can a reflex agent be rational?

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

- Planning agents:
- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE
- Optimal vs. complete planning
- Planning vs. replanning

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

- A search problem consists of:
- A state space

- A successor function
(with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

- State space:
- Cities
- Successor function:
- Roads: Go to adjacent city with cost $=$ distance
- Start state:
- Arad
- Goal test:
- Is state == Bucharest?
- Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
- States: (x,y) location
- Actions: NSEW
- Successor: update location only
- Goal test: is $(x, y)=E N D$
- Problem: Eat-All-Dots
- States: $\{(\mathrm{x}, \mathrm{y})$, dot booleans $\}$
- Actions: NSEW
- Successor: update location and possibly a dot boolean
- Goal test: dots all false

State Space Sizes?

- World state:
- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW
- How many
- World states?
$120 \mathrm{x}\left(2^{30}\right) \times\left(12^{2}\right) \times 4$
- States for pathing?

120

- States for eat-all-dots?

$$
120 x\left(2^{30}\right)
$$

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs represent successors (action results)
- The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

- A search tree:
- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:
How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:
How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

- Search:
- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

```
function Tree-Search(problem, strategy) returns a solution, or failure
    initialize the search tree using the initial state of problem
    loop do
        if there are no candidates for expansion then return failure
        choose a leaf node for expansion according to strategy
        if the node contains a goal state then return the corresponding solution
        else expand the node and add the resulting nodes to the search tree
    end
```

- Important ideas:
- Fringe
- Expansion
- Exploration strategy
- Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
$\circ \mathrm{b}$ is the branching factor
- m is the maximum depth
- solutions at various depths
- Number of nodes in entire tree?

o $1+b+b^{2}+\ldots . b^{m}=O\left(b^{m}\right)$

Depth-First Search (DFS) Properties

- What nodes DFS expand?
- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time $O\left(b^{m}\right)$
- How much space does the fringe take?
- Only has siblings on path to root, so O(bm)
- Is it complete?
- m could be infinite, so only if we prevent cycles (more later)

1 node b nodes b^{2} nodes
bm nodes

- Is it optimal?
- No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first Implementation:
Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
- Processes all nodes above shallowest solution
- Let depth of shallowest solution be s
- Search takes time O(bs)
- How much space does the fringe take?
- Has roughly the last tier, so $\mathrm{O}\left(\mathrm{b}^{\mathrm{s}}\right)$
- Is it complete?
- s must be finite if a solution exists, so yes!
- Is it optimal?
- Only if costs are all 1 (more on costs later)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS / BFS (part 2)

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
- Run a DFS with depth limit 1. If no solution...
- Run a DFS with depth limit 2. If no solution...
- Run a DFS with depth limit 3.
- Isn't that wastefully redundant?

- Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
- Processes all nodes with cost less than cheapest solution!
- If that solution costs C^{*} and arcs cost at least ε, then the "effective depth" is roughly C^{*} / ε
- Takes time $\mathrm{O}\left(\mathrm{b}^{C^{*} / \varepsilon}\right)$ (exponential in effective depth)
- How much space does the fringe take?
- Has roughly the last tier, so $\mathrm{O}\left(\mathrm{b}^{C^{*} / \varepsilon}\right)$
- Is it complete?

- Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
- Yes! (Proof via A*)

Uniform Cost Issues

- Remember: UCS explores increasing cost contours
- The good: UCS is complete and optimal!

- The bad:
- Explores options in every "direction"
- No information about goal location
- We'll fix that soon!

Video of Demo Empty UCS

Demo Maze with Deep / Shallow Water --- DFS, BFS, or UCS? (part 1)

Demo Maze with Deep / Shallow Water --- DFS, BFS, or UCS? (part 2)

Demo Maze with Deep / Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

- All these search algorithms are the same except for fringe strategies
- DFS: Fringe is a Stack
- BFS: Fringe is a Queue
- UCS: Fringe is a PriorityQueue
- Can even code one implementation th takes a variable queuing object

Up next: Informed Search

- Uninformed Search
- DFS
- BFS
- UCS
- Informed Search (Heuristics)
- Greedy Search
- A* Search

Search Heuristics

- A heuristic is:
- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance

Example: Heuristic Function

Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie

Fagaras 178
Giurgiu $\quad 77$
Hirsova 151
Iasi
Lugoj
Mehadia 241
Neamt
Oradea $\quad 380$
Pitest 193
$\begin{array}{ll}\text { Rimnicu Vilcea } & 193 \\ \text { Sibiu } & 253\end{array}$
$\begin{array}{lr}\text { Timisoara } & 329 \\ \text { Urziceni } & 80\end{array}$
Vaslui
Taslu
Zerind

$$
h(X)
$$

Greedy Search

Greedy Search

- Expand the node that seems closest...
- Move to smallest heuristic value

- Is it optimal?

- No. Resulting path to Bucharest is not the shortest!

A* Search

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

A* Demo, with s=0, goal = 6. (Credit: Josh Hug)

Insert all vertices into fringe PQ, storing vertices in order of $\mathrm{d}($ source, v$)+\mathrm{h}(\mathrm{v}$, goal).
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .

$h(v$, goal $)$ is arbitrary. In this example, it's the min weight edge out of each vertex.
Fringe:
[(1:
$\infty)$, (2:
$\infty),(3: \infty)$,
(4:
$\infty)$
(5:
$\infty)$, (6:
$\infty)$]

A* Demo, with s=0, goal = 6 .

Insert all vertices into fringe $P Q$, storing vertices in order of $d($ source,$v)+h(v$, goal $)$.
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .

$$
\text { Fringe: }[(1: 5),(2: 16),(3: \infty),(4: \infty),(5: \infty),(6: \infty)]
$$

A* Demo, with $\mathrm{s}=0$, goal $=6$.

Insert all vertices into fringe $P Q$, storing vertices in order of $d($ source, $v)+h(v$, goal).
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .

$$
\text { Fringe: }[(2: 16),(3: \infty),(4: \infty),(5: \infty),(6: \infty)]
$$

A* Demo, with $\mathrm{s}=0$, goal $=6$.

Insert all vertices into fringe $P Q$, storing vertices in order of $d($ source, $v)+h(v$, goal).
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .

$\#$	distTo
0	0
1	2
2	1
3	13
4	5
5	∞
6	∞

Which
Fringe: [(4: 6), (3: 15), (2: 16), (5: ∞), (6: ∞)] vertex is removed

A* Demo, with $s=0$, goal $=6$.

Insert all vertices into fringe PQ, storing vertices in order of d(source, $v)+h(v$, goal $)$.
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .

A* Demo, with $\mathrm{s}=0$, goal $=6$.

Insert all vertices into fringe $P Q$, storing vertices in order of $d($ source, $v)+h(v$, goal).
Repeat: Remove best vertex v from PQ , and relax all edges pointing from v .
 we're done!

$$
\text { Fringe: }[(6: 10),(3: 15),(2: 16),(5: \infty)]
$$

A* Demo, with s=0, goal $=6$.

Insert all vertices into fringe PQ, storing vertices in order of $d($ source,$v)+h(v$, goal $)$.
Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

- Not every vertex got visited.
- Result is not a shortest paths tree for vertex zero (path to 3 is suboptimal!), but that's OK because we only care about path to 6.

Is A* Optimal?

5

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics
break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

- A heuristic h is admissible (optimistic) iff:

$$
0 \leq h(n) \leq h^{*}(n)
$$

where $\quad h^{*}(n)$ the true cost to a nearest goal

- Examples:

0.0

- Coming up with admissible heuristics is most of what's involved in using A^{*} in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

- A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(n)$ is less or equal to $f(A)$

$$
\begin{array}{ll}
f(n)=g(n)+h(n) & \text { Definition of f-cost } \\
f(n) \leq g(A) & \text { Admissibility of } \mathrm{h} \\
g(A)=f(A) & \mathrm{h}=0 \text { at a goal }
\end{array}
$$

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(\mathrm{n})$ is less or equal to $f(\mathrm{~A})$

2. $f(A)$ is less than $f(B)$

$$
\begin{array}{ll}
g(A)<g(B) & \text { B is suboptimal } \\
f(A)<f(B) & \mathrm{h}=0 \text { at a goal }
\end{array}
$$

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B

1. $f(n)$ is less or equal to $f(A)$

2. $f(A)$ is less than $f(B)$
3. n expands before B

- All ancestors of A expand before B

$$
f(n) \leq f(A)<f(B)
$$

- A expands before B
- A* search is optimal

Properties of A*

Uniform-Cost

UCS vs A* Contours

- Uniform-cost expands equally in all "directions"

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) - A*

Demo Contours (Pacman Small Maze) - A*

Comparison

Greedy
Uniform Cost
A*

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

- Inadmissible heuristics are often useful too

Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Admissible heuristics?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $\mathrm{h}($ start $)=8$
- This is a relaxed-problem heuristic

	Average nodes expanded when the optimal path has...		
	$\ldots 4$ steps	$\ldots 8$ steps	$\ldots .12$ steps
UCS	112	6,300	3.6×10^{6}
TILES	13	39	227

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

Start State

- Why is it admissible?
h(tart) $3+1+2+\ldots=18$

	Average nodes expanded when the optimal path has...		
	. .4 steps	$\ldots 8$ steps	. .12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

- Dominance: $\mathrm{h}_{\mathrm{a}} \geq \mathrm{h}_{\mathrm{c}}$ if

$$
\forall n: h_{a}(n) \geq h_{c}(n)
$$

- Heuristics form a semi-lattice:
- Max of admissible heuristics is admissible

$$
\left.h(n)=\max ^{(} h_{a}(n), h_{b}(n)\right)
$$

- Trivial heuristics
- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work.

Graph Search

- In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
- Tree search + set of expanded states ("closed set")
- Expand the search tree node-by-node, but...
- Before expanding a node, check to make sure its state has never been expanded before
- If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/ why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set:S B C A

Consistency of Heuristics

- Main idea: estimated heuristic costs \leq actual costs
- Admissibility: heuristic cost \leq actual cost to goal
$\mathrm{h}(\mathrm{v}) \leq \mathrm{h} *(\mathrm{v})$ for all $\mathrm{v} \in V$
Underestimate the true cost to the goal!
- Consistency: heuristic "arc" cost \leq actual cost for each arc
$h(v)-h(v) \leq d(u, v)$ for all $(u, v) \in E$
Underestimate the weight of every edge!
- Consequences of consistency:
- The f value along a path never decreases

$$
\mathrm{h}(\mathrm{~A}) \leq \operatorname{cost}(\mathrm{A} \text { to } \mathrm{C})+\mathrm{h}(\mathrm{C})
$$

- A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
- With $\mathrm{h}=0$, the same proof shows that UCS is optimal.

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
- Fact 1: In tree search, A* expands nodes in increasing total f value (f -contours)
- Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal

Optimality

- Tree search:
- A* is optimal if heuristic is admissible
- UCS is a special case $(\mathrm{h}=0)$
- Graph search:
- A* optimal if heuristic is consistent
- UCS optimal ($\mathrm{h}=0$ is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if it comes from a relaxed problem

Tree Search Pseudo-Code

```
function Tree-SEARCH(problem, fringe) return a solution, or failure
    fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node \leftarrow REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        for child-node in EXPAND(STATE[node], problem) do
            fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```


Graph Search Pseudo-Code

```
function Graph-SEARCH(problem, fringe) return a solution, or failure
    closed }\leftarrow\mathrm{ an empty set
    fringe \leftarrow L INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node }\leftarrow\mathrm{ REMOVE-FRONT(fringe)
        if GOAL-TEST(problem, STATE[node]) then return node
        if state[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
            fringe }\leftarrow\operatorname{INSERT(child-node, fringe)
        end
    end
```


Search and Models

- Search operates over models of the world
- The agent doesn't actually try all the plans out in the real world!
- Planning is all "in simulation"
- Your search is only as good as your models...

Search Gone Wrong?

