CS 188: Artificial Intelligence

Search Problems

Instructors: Saagar Sanghavi, Nicholas Tomlin

University of California, Berkeley

(slides adapted from Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell)

Last time...

- Utilities and Rationality
- Rational Preferences
- MEU Principle

```
Orderability: (A > B) \lor (B > A) \lor (A \sim B)

Transitivity: (A > B) \land (B > C) \Rightarrow (A > C)

Continuity: (A > B > C) \Rightarrow \exists p [p, A; 1-p, C] \sim B

Substitutability: (A \sim B) \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]

Monotonicity: (A > B) \Rightarrow [p, A; 1-p, B] \geq [q, A; 1-q, B]
```

Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search

Agents that Plan

Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - May have memory or a model of the world's current state
 - Do not consider the future consequences of their actions
 - Consider how the world IS
- Can a reflex agent be rational?

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

- Planning agents:
 - Ask "what if"
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal (test)
 - Consider how the world WOULD BE
- Optimal vs. complete planning
- Planning vs. replanning

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

- A search problem consists of:
 - A state space

A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - o Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing
 - States: (x,y) location
 - o Actions: NSEW
 - Successor: update location only
 - \circ Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - \circ States: {(x,y), dot booleans}
 - o Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - o Goal test: dots all false

State Space Sizes?

World state:

• Agent positions: 120

• Food count: 30

• Ghost positions: 12

• Agent facing: NSEW

• How many

• World states?

 $120x(2^{30})x(12^{2})x4$

• States for pathing?

120

• States for eat-all-dots?

 $120x(2^{30})$

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

• A search tree:

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.
We construct only what we need on demand

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

• Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy
- Main question: which fringe nodes to explore?

Example: Tree Search

Example: Tree Search


```
s \rightarrow d

s \rightarrow e

s \rightarrow p

s \rightarrow d \rightarrow b

s \rightarrow d \rightarrow c

s \rightarrow d \rightarrow e

s \rightarrow d \rightarrow e \rightarrow h

s \rightarrow d \rightarrow e \rightarrow r

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f

s \rightarrow d \rightarrow e \rightarrow r \rightarrow f \rightarrow c
```

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - o m is the maximum depth
 - solutions at various depths
- Number of nodes in entire tree?

$$0 1 + b + b^2 + \dots b^m = O(b^m)$$

Depth-First Search (DFS) Properties

• What nodes DFS expand?

- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time O(bm)
- How much space does the fringe take?
 - Only has siblings on path to root, so O(bm)
- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - o Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(bs)
- How much space does the fringe take?
 - Has roughly the last tier, so O(bs)
- Is it complete?
 - o s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

Iterative Deepening

- Idea: get DFS's space advantage with
 BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?

- Processes all nodes with cost less than cheapest solution!
- \circ If that solution costs C^* and arcs cost at least ϵ , then the "effective depth" is roughly C^*/ϵ
- \circ Takes time $O(b^{C*/\epsilon})$ (exponential in effective depth)

C^*/ϵ "tiers"

How much space does the fringe take?

• Has roughly the last tier, so $O(b^{C*/\epsilon})$

• Is it complete?

• Assuming best solution has a finite cost and minimum arc cost is positive, yes!

• Is it optimal?

○ Yes! (Proof via A*)

Uniform Cost Issues

Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location
- We'll fix that soon!

Video of Demo Empty UCS

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

The One Queue

- All these search algorithms are the same except for fringe strategies
 - DFS: Fringe is a Stack
 - BFS: Fringe is a Queue
 - UCS: Fringe is a PriorityQueue
 - Can even code one implementation th takes a variable queuing object

Up next: Informed Search

- Uninformed Search
 - o DFS
 - o BFS
 - o UCS

- Informed Search (Heuristics)
 - Greedy Search
 - A* Search

Search Heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance

Example: Heuristic Function

Straight-line distance to Bucharest	
Arad	266
	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

h(x)

Greedy Search

Greedy Search

- Expand the node that seems closest...
 - Move to smallest heuristic value

○ No. Resulting path to Bucharest is not the shortest!

A* Search

Combining UCS and Greedy

Example: Teg Grenager

When should A* terminate?

• Should we stop when we enqueue a goal?

o No: only stop when we₁dequeue a goal

A* Demo, with s = 0, goal = 6. (Credit: Josh Hug)

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

h(v, goal) is arbitrary. In this example, it's the min weight edge out of each vertex.

Fringe:
$$[(1: \infty), (2: \infty), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]$$

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Fringe: $[(1: 5), (2: 16), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]$

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Fringe: $[(2: 16), (3: \infty), (4: \infty), (5: \infty), (6: \infty)]$

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Fringe: [(4: 6), (3: 15), (2: 16), (5: ∞), (6: ∞)] vertex is removed

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Fringe: $[(6: 10), (3: 15), (2: 16), (5: \infty)]$

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

Next vertex to be dequeued is our target, so we're done!

Fringe: $[(6: 10), (3: 15), (2: 16), (5: \infty)]$

Insert all vertices into fringe PQ, storing vertices in order of d(source, v) + h(v, goal).

Repeat: Remove best vertex v from PQ, and relax all edges pointing from v.

- Not every vertex got visited.
- Result is not a shortest paths tree for vertex zero (path to 3 is suboptimal!), but that's OK because we only care about path to 6.

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) iff:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ the true cost to a nearest goal

• Examples:

0.0

• Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
$$f(n) \le g(A)$$
$$g(A) = f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor *n* of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: *n* will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Properties of A*

Uniform-Cost

 A^*

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)] [Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

Creating Heuristics

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Admissible heuristics?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \circ h(start) = 8
- This is a *relaxed-problem* heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	-	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?

$$h(start) = 3 + 1 + 2 + ... = 18$$

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Trivial Heuristics, Dominance

○ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Graph Search

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work.

Graph Search

• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Closed Set:S B C A

Consistency of Heuristics

○ Main idea: estimated heuristic costs ≤ actual costs

Admissibility: heuristic cost ≤ actual cost to goal

 $h(v) \le h^*(v)$ for all $v \in V$

Underestimate the true cost to the goal!

Consistency: heuristic "arc" cost ≤ actual cost for each arc

 $h(v) - h(v) \le d(u, v)$ for all $(u, v) \in E$

Underestimate the weight of every edge!

Consequences of consistency:

• The f value along a path never decreases

$$h(A) \le cost(A \text{ to } C) + h(C)$$

• A* graph search is optimal

Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
 - With h=0, the same proof shows that UCS is optimal.

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - \circ UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - \circ UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if it comes from a relaxed problem

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure

fringe \leftarrow Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow remove-front(fringe)

if Goal-test(problem, state[node]) then return node

for child-node in expand(state[node], problem) do

fringe \leftarrow insert(child-node, fringe)

end

end
```

Graph Search Pseudo-Code

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
    closed ← an empty set
    fringe ← Insert(Make-node(initial-state[problem]), fringe)
loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST(problem, STATE[node]) then return node
    if state[node] is not in closed then
        add STATE[node] to closed
        for child-node in EXPAND(STATE[node], problem) do
            fringe ← INSERT(child-node, fringe)
        end
end
```

Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - Planning is all "in simulation"
 - Your search is only as good as your models...

Search Gone Wrong?

