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Behavior from Computation

[Demo: mystery pacman (L6D1)]



Video of Demo Mystery Pacman



Types of Games

o Many different kinds of games!

o Axes:
o Deterministic or stochastic?
o One, two, or more players?
o Zero sum?
o Perfect information (can you see the state)?



Types of Games

o Zero-Sum Games
o Agents have opposite utilities (values on outcomes)
o Lets us think of a single value that one maximizes 

and the other minimizes
o Adversarial, pure competition

o General Games
o Agents have independent utilities (values on outcomes)
o Cooperation, indifference, competition, and more are all possible

o We don’t make AI to act in isolation, it should a) work around people and 
b) help people

o That means that every AI agent needs to solve a game



Types of Games

o Common payoff games
o Discussion: Use a technique you’ve learned so far to solve one! 



Zero-Sum Games ☺
o Checkers 

o (1950): First computer player.  
o (1994): First computer champion: Chinook ended 40-

year-reign of human champion Marion Tinsley using 
complete 8-piece endgame. 

o (2007): Checkers solved!

o Chess 
o (1997): Deep Blue defeats human champion Gary 

Kasparov in a six-game match.  Current programs are 
even better, if less historic.

o Go
o (2016): AlphaGo defeats human champion Lee Sedol. 

Uses Monte Carlo Tree Search, learned evaluation 
function.



Deterministic Games with Terminal Utilities

o Many possible formalizations, one is:
o States: S (start at s0)
o Players: P = {1...N} (usually take turns)
o Actions: A (may depend on player / state)
o Transition Function: S x A → S
o Terminal Test: S → {t, f}
o Terminal Utilities: S x P → R

o Solution for a player is a policy: S → A



Adversarial Games



Adversarial Search



Single-Agent Trees
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Value of a State
Non-Terminal States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state



Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8



Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

o Deterministic, zero-sum games:
o Tic-tac-toe, chess, checkers
o One player maximizes result
o The other minimizes result

o Minimax search:
o A state-space search tree
o Players alternate turns
o Compute each node’s minimax value: 

the best achievable utility against a 
rational (optimal) adversary
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max

min2 5
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Terminal values: 
part of the game 

Minimax values: 
computed recursively



Minimax Implementation (Dispatch)

def value(state):
if the state is terminal: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state): 
initialize v = +∞ 
for each successor of state: 

v = min(v, value(successor)) 
return v 

def max-value(state): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor)) 
return v



Minimax Example

12 8 5 23 2 144 6

3 2 2

3



Minimax Properties

Optimal against a perfect player.  Otherwise?

10 10 9 100

max

min



Minimax Efficiency

o How efficient is minimax?
o Just like (exhaustive) DFS
o Time: O(bm)
o Space: O(bm)

o Example: For chess, b ≈ 35, m ≈ 100
o Exact solution is completely infeasible
o But, do we need to explore the whole 

tree?



Game Tree Pruning



Minimax Example: Metareasoning

12 8 5 23 2 14

3 <=2 2

3



Alpha-Beta Implementation

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β): 
initialize v = +∞ 
for each successor of state: 

v = min(v, value(successor, α, β)) 
if v ≤ α return v 
β = min(β, v) 

return v

def max-value(state, α, β): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor, α, β)) 
if v ≥ β return v 
α = max(α, v) 

return v



Alpha-Beta Pruning Properties
o This pruning has no effect on minimax value computed for the root!

o Values of intermediate nodes might be wrong
o Important: children of the root may have the wrong value
o So the most naïve version won’t let you do action selection

o Good child ordering improves effectiveness of pruning

o With “perfect ordering”:
o Time complexity drops to O(bm/2)
o Doubles solvable depth!
o Full search of, e.g. chess, is still hopeless…

o This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min



Alpha-Beta Quiz



Alpha-Beta Quiz 2

2



Alpha-Beta Quiz 2

10
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>=100 2

<=2



Resource Limits



Resource Limits
o Problem: In realistic games, cannot search to leaves!

o Solution: Depth-limited search
o Instead, search only to a limited depth in the tree
o Replace terminal utilities with an evaluation function for non-terminal 

positions

o Example:
o Suppose we have 100 seconds, can explore 10K nodes / sec
o So can check 1M nodes per move
o α-β reaches about depth 8 – decent chess program

o Guarantee of optimal play is gone

o More plies makes a BIG difference

o Use iterative deepening for an anytime algorithm
? ? ? ?
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Depth Matters

o Evaluation functions are always 
imperfect

o The deeper in the tree the 
evaluation function is buried, the 
less the quality of the evaluation 
function matters

o An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Video of Demo Limited Depth (2)



Video of Demo Limited Depth (10)



Evaluation Functions



Evaluation Functions
o Evaluation functions score non-terminals in depth-limited search

o Ideal function: returns the actual minimax value of the position
o In practice: typically weighted linear sum of features:

o e.g.  f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]



Video of Demo Thrashing (d=2)



Why Pacman Starves

o A danger of replanning agents!
o He knows his score will go up by eating the dot now (west, east)
o He knows his score will go up just as much by eating the dot later (east, west)
o There are no point-scoring opportunities after eating the dot (within the horizon, two here)
o Therefore, waiting seems just as good as eating: he may go east, then back west in the next 

round of replanning!



Video of Demo Thrashing -- Fixed (d=2)



Video of Demo Smart Ghosts (Coordination)



Video of Demo Smart Ghosts (Coordination) – Zoomed In



Other Game Types



Multi-Agent Utilities
o What if the game is not zero-sum, or has multiple players?

o Generalization of minimax:
o Terminals have utility tuples
o Node values are also utility tuples
o Each player maximizes its own component
o Can give rise to cooperation and

competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

1,6,6



Uncertain Outcomes



Worst-Case vs. Average Case

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!



Why not minimax?

o Worst case reasoning is too conservative
o Need average case reasoning



Expectimax Search

o Why wouldn’t we know what the result of an action will be?
o Explicit randomness: rolling dice
o Unpredictable opponents: the ghosts respond randomly
o Unpredictable humans: humans are not perfect
o Actions can fail: when moving a robot, wheels might slip

o Values should now reflect average-case (expectimax) outcomes, not 
worst-case (minimax) outcomes

o Expectimax search: compute the average score under optimal play
o Max nodes as in minimax search
o Chance nodes are like min nodes but the outcome is uncertain
o Calculate their expected utilities
o I.e. take weighted average (expectation) of children

o Later, we’ll learn how to formalize the underlying uncertain-result 
problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100



Video of Demo Minimax vs Expectimax (Min)



Video of Demo Minimax vs Expectimax (Exp)



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state): 
initialize v = 0 
for each successor of state: 
  p = 

probability(successor) 
v += p * value(successor) 

return v 

def max-value(state): 
initialize v = -∞ 
for each successor of state: 

v = max(v, value(successor)) 
return v



Expectimax Pseudocode

def exp-value(state): 
initialize v = 0 
for each successor of state: 
  p = 

probability(successor) 
v += p * value(successor) 

return v 
5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Expectimax Example

12 9 6 03 2 154 6



Expectimax Pruning?

12 93 2



Depth-Limited Expectimax

…

…

492 362 …

400 300
Estimate of true 

expectimax value 
(which would 

require a lot of 
work to compute)



What Probabilities to Use?

o In expectimax search, we have a probabilistic 
model of how the opponent (or environment) 
will behave in any state
o Model could be a simple uniform distribution (roll 

a die)
o Model could be sophisticated and require a great 

deal of computation
o We have a chance node for any outcome out of our 

control: opponent or environment
o The model might say that adversarial actions are 

likely!
o For now, assume each chance node magically 

comes along with probabilities that specify 
the distribution over its outcomes Having a probabilistic belief about 

another agent’s action does not mean 
that the agent is flipping any coins!



Quiz: Informed Probabilities

o Let’s say you know that your opponent is actually running a depth 2 minimax, 
using the result 80% of the time, and moving randomly otherwise

o Question: What tree search should you use?  

0.1          0.9

▪ Answer: Expectimax! 
▪ To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent 
▪ This kind of thing gets very slow very quickly 
▪ Even worse if you have to simulate your 

opponent simulating you… 
▪ … except for minimax and maximax, which have 

the nice property that it all collapses into one 
game tree

This is basically how you would model a human, except for their utility: their utility might be the same as yours (i.e. you try 
to help them, but they are depth 2 and noisy), or they might have a slightly different utility (like another person navigating 
in the office)



Modeling Assumptions



The Dangers of Optimism and Pessimism
Dangerous Optimism 

Assuming chance when the world is adversarial
Dangerous Pessimism 

Assuming the worst case when it’s not likely



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax 
Pacman

Won 5/5 

Avg. Score: 483

Won 5/5 

Avg. Score: 493

Expectimax 
Pacman

Won 1/5 

Avg. Score: -303

Won 5/5 

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble 
Ghost used depth 2 search with an eval function that seeks Pacman



Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax 
Pacman
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Won 5/5 
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Expectimax 
Pacman
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[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble 
Ghost used depth 2 search with an eval function that seeks Pacman



Video of Demo World Assumptions 
Random Ghost – Expectimax Pacman



Video of Demo World Assumptions 
Adversarial Ghost – Minimax Pacman



Video of Demo World Assumptions 
Adversarial Ghost – Expectimax Pacman



Video of Demo World Assumptions 
Random Ghost – Minimax Pacman



Mixed Layer Types

o E.g. Backgammon
o Expectiminimax

o Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

o Each node computes 
the appropriate 
combination of its 
children



Example: Backgammon
o Dice rolls increase b: 21 possible rolls with 2 dice

o Backgammon ≈ 20 legal moves
o Depth 2 = 20 x (21 x 20)3 = 1.2 x 109

o As depth increases, probability of reaching a given search 
node shrinks
o So usefulness of search is diminished
o So limiting depth is less damaging
o But pruning is trickier…

o Historic AI: TDGammon uses depth-2 search + very good 
evaluation function + reinforcement learning:  
world-champion level play

o 1st AI world champion in any game!



What Utility Values to Use?

o For worst-case minimax reasoning, evaluation function scale doesn’t matter
o We just want better states to have higher evaluations (get the ordering right)
o Minimax decisions are invariant with respect to monotonic transformations on values

o Expectiminimax decisions are invariant with respect to positive affine transformations
o Expectiminimax evaluation functions have to be aligned with actual win probabilities!

0 40 20 30 x2 0 1600 400 900

x>y => f(x)>f(y) f(x) = Ax+B where A>0 
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Monte Carlo Tree Search

o Methods based on alpha-beta search assume a fixed horizon
o Pretty hopeless for Go, with b > 300

o MCTS combines two important ideas:
o Evaluation by rollouts – play multiple games to termination from 

a state s (using a simple, fast rollout policy) and count wins and 
losses

o Selective search – explore parts of the tree that will help improve 
the decision at the root, regardless of depth



Rollouts

o For each rollout:
o Repeat until terminal:

oPlay a move according to a fixed, 
fast rollout policy

o Record the result
o Fraction of wins correlates with 

the true value of the position!
o Having a “better” rollout policy 

helps

“Move 37”



MCTS Version 0

o Do N rollouts from each child of the root, record fraction of wins
o Pick the move that gives the best outcome by this metric

57/100 65/10039/100



MCTS Simple Version

o Do N rollouts from each child of the root, record fraction of wins
o Pick the move that gives the best outcome by this metric

57/100 59/1000/100



MCTS

o Allocate rollouts to more promising nodes

77/140 90/1500/10



MCTS

o Allocate rollouts to more promising nodes

61/100 48/1006/10



MCTS Version 1

o Allocate rollouts to more promising nodes
o Allocate rollouts to more uncertain nodes

61/100 48/1006/10



UCB heuristics

o UCB1 formula combines “promising” and “uncertain”:

o N(n) = number of rollouts from node n 
o U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))

75



MCTS Version 2: UCT

o Repeat until out of time:
oGiven the current search tree, recursively apply UCB to choose a 

path down to a leaf (not fully expanded) node n
oAdd a new child c to n and run a rollout from c
oUpdate the win counts from c back up to the root

o Choose the action leading to the child with highest N

76



UCT Example

77

2/3 0/2 2/2

4/7 0/1 0/1

4/9

1/2

1/2

5/10



Why is there no min or max?????

o “Value” of a node, U(n)/N(n), is a weighted sum of child 
values!

o Idea: as N → ∞ , the vast majority of rollouts are 
concentrated in the best children, so weighted average → 
max/min

o Theorem: as N → ∞ UCT selects the minimax move
o (but N never approaches infinity!)

78



Summary
o Games require decisions when optimality is impossible

o Bounded-depth search and approximate evaluation functions
o Games force efficient use of computation

o Alpha-beta pruning, MCTS
o Game playing has produced important research ideas

o Reinforcement learning (checkers)
o Iterative deepening (chess)
o Rational metareasoning (Othello)
o Monte Carlo tree search (chess, Go)
o Solution methods for partial-information games in economics (poker)

o Video games present much greater challenges – lots to do!
o b = 10500, |S| = 104000, m = 10,000, partially observable, often > 2 players


