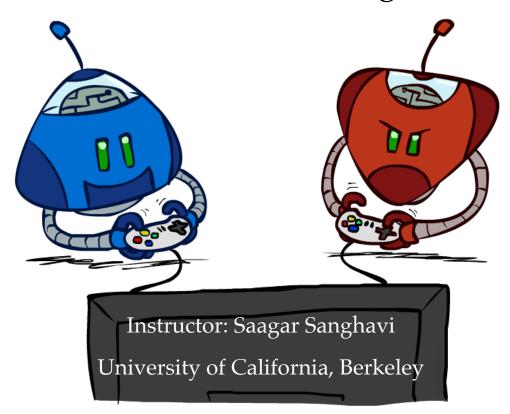
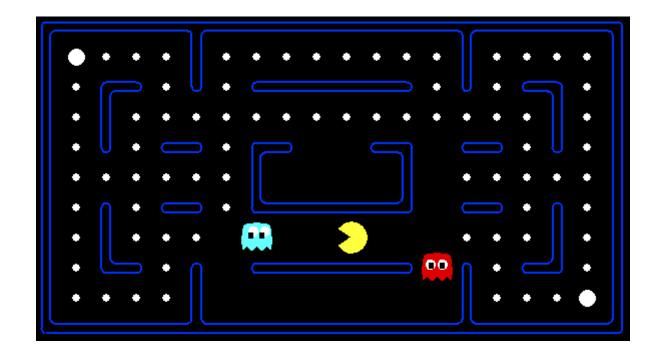
CS 188: Artificial Intelligence

Search with Other Agents



These slides adapted from Dan Klein. Pieter Abbeel. Anca Dragan. Stuart Russell. and many othersl

Behavior from Computation



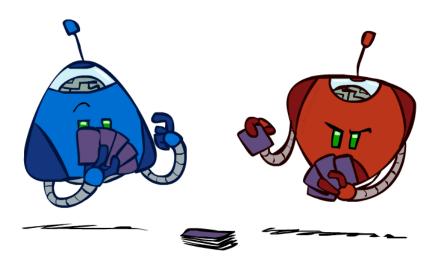
[Demo: mystery pacman (L6D1)]

Video of Demo Mystery Pacman

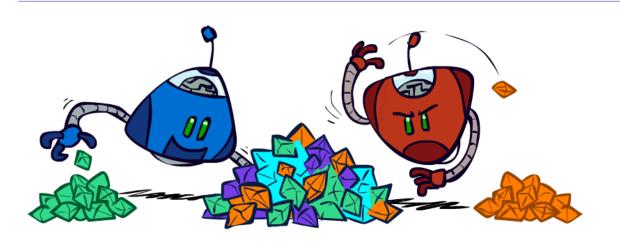
Types of Games

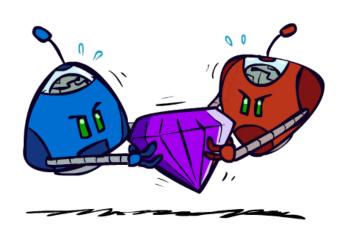
Many different kinds of games!

- Axes:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Zero sum?
 - Perfect information (can you see the state)?



Types of Games





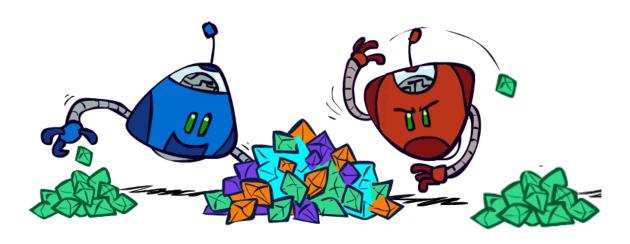
General Games

- Agents have independent utilities (values on outcomes)
- o Cooperation, indifference, competition, and more are all possible
 - We don't make AI to act in isolation, it should a) work around people and
 b) help people
 - o That means that every AI agent needs to solve a game

Zero-Sum Games

- Agents have opposite utilities (values on outcomes)
- Lets us think of a single value that one maximizes and the other minimizes
- Adversarial, pure competition

Types of Games



Common payoff games

o Discussion: Use a technique you've learned so far to solve one!

Zero-Sum Games ©

Checkers

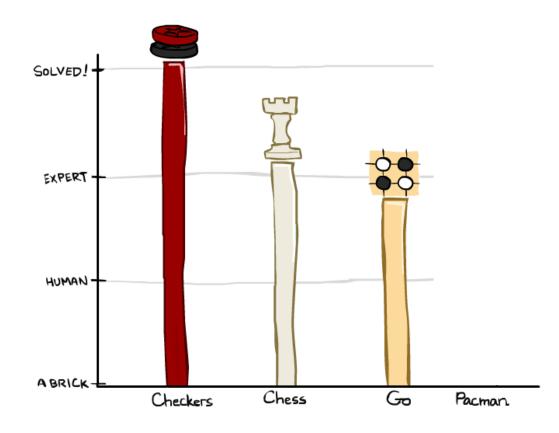
- o (1950): First computer player.
- o (1994): First computer champion: Chinook ended 40year-reign of human champion Marion Tinsley using complete 8-piece endgame.
- o (2007): Checkers solved!

Chess

o (1997): Deep Blue defeats human champion Gary Kasparov in a six-game match. Current programs are even better, if less historic.

o Go

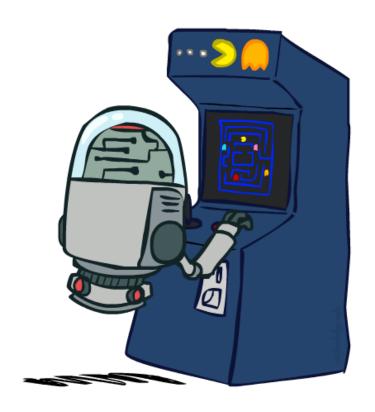
• (2016): AlphaGo defeats human champion Lee Sedol. Uses Monte Carlo Tree Search, learned evaluation function.



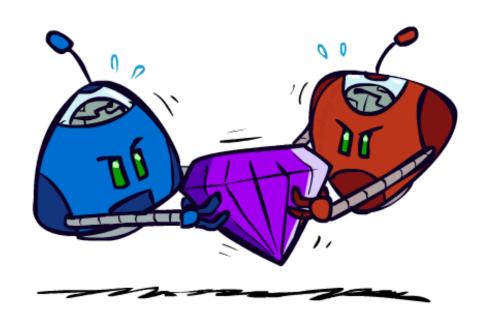
Deterministic Games with Terminal Utilities

- Many possible formalizations, one is:
 - o States: S (start at s_0)
 - \circ Players: $P = \{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - \circ Transition Function: $S \times A \rightarrow S$
 - \circ Terminal Test: $S \rightarrow \{t, f\}$
 - \circ Terminal Utilities: $S \times P \rightarrow R$

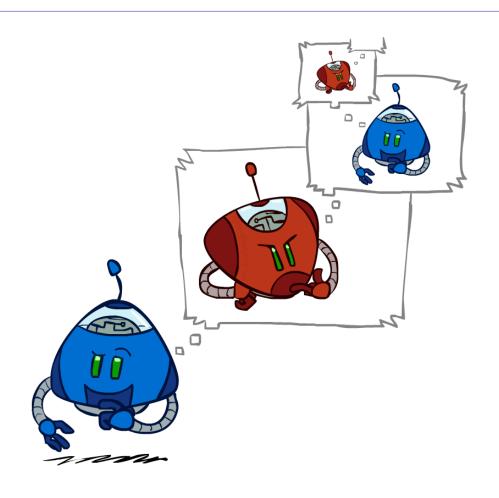
○ Solution for a player is a policy: $S \rightarrow A$



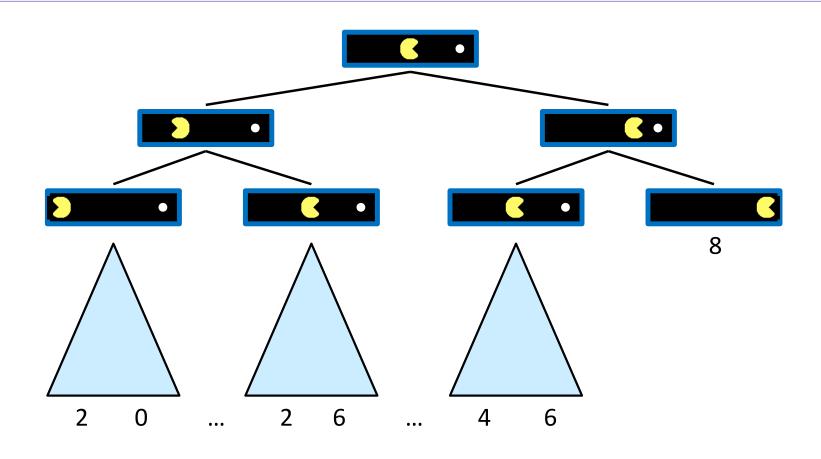
Adversarial Games



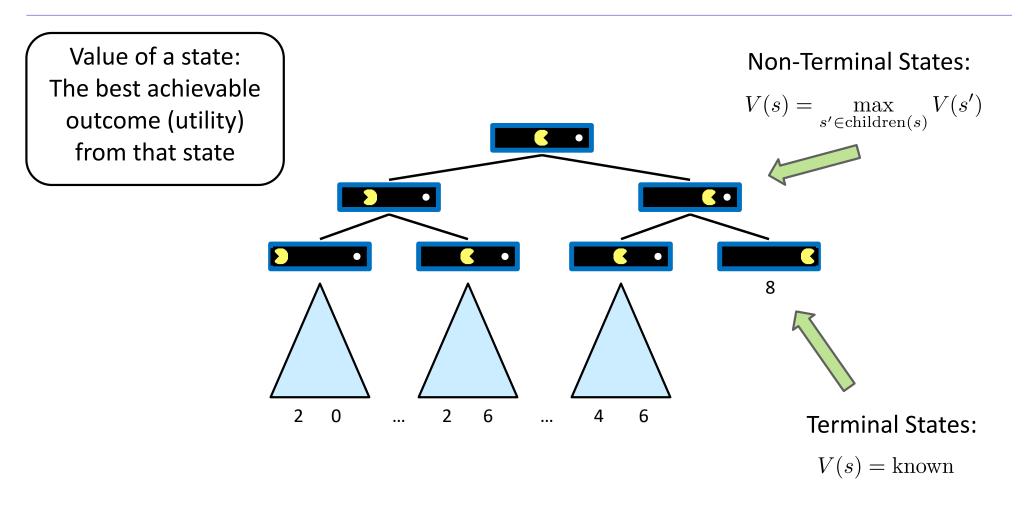
Adversarial Search



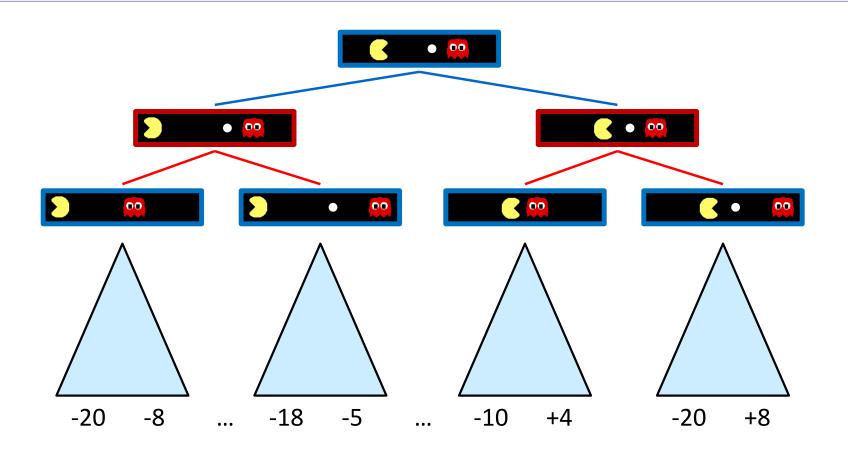
Single-Agent Trees



Value of a State



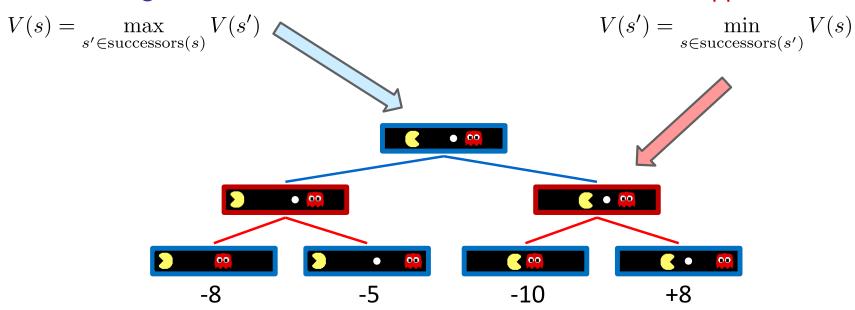
Adversarial Game Trees



Minimax Values

States Under Agent's Control:

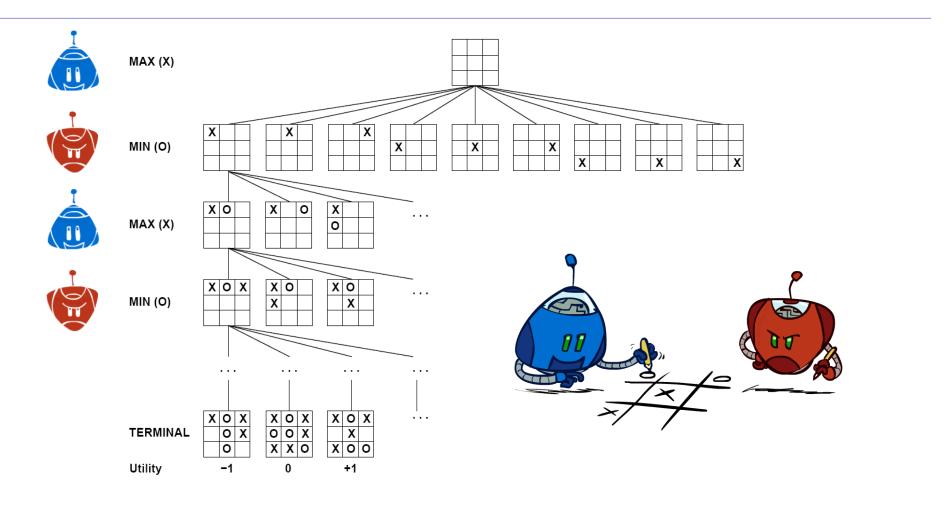
States Under Opponent's Control:



Terminal States:

$$V(s) = \text{known}$$

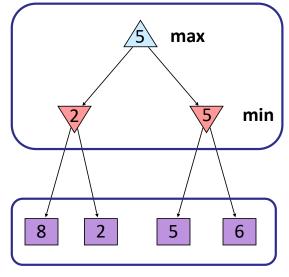
Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively



Terminal values: part of the game

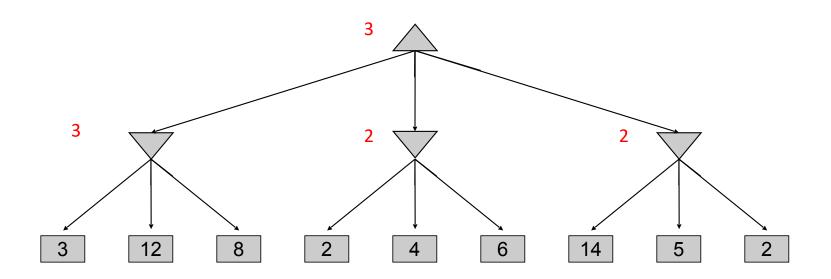
Minimax Implementation (Dispatch)

```
def value(state):
    if the state is terminal: return the state's utility
    if the next agent is MAX: return max-value(state)
    if the next agent is MIN: return min-value(state)

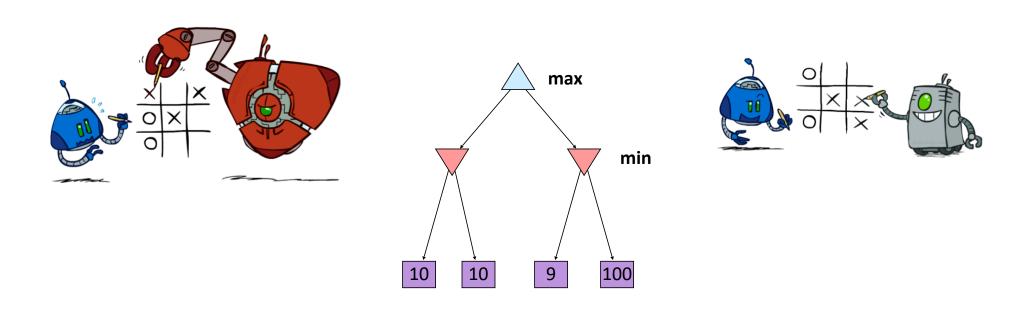
def max-value(state):
    initialize v = -∞
    for each successor of state:
        v = max(v, value(successor))
    return v

def min-value(state):
    initialize v = +∞
    for each successor of state:
        v = min(v, value(successor))
    return v
```

Minimax Example



Minimax Properties



Optimal against a perfect player. Otherwise?

Minimax Efficiency

• How efficient is minimax?

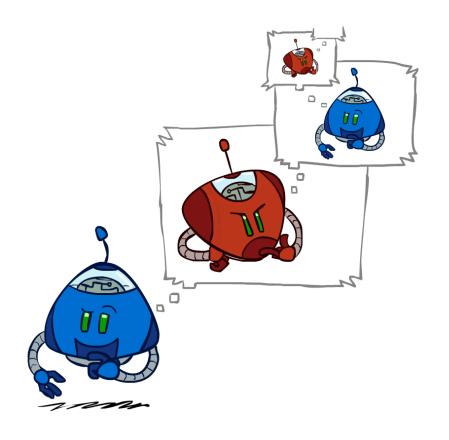
Just like (exhaustive) DFS

○ Time: O(b^m)

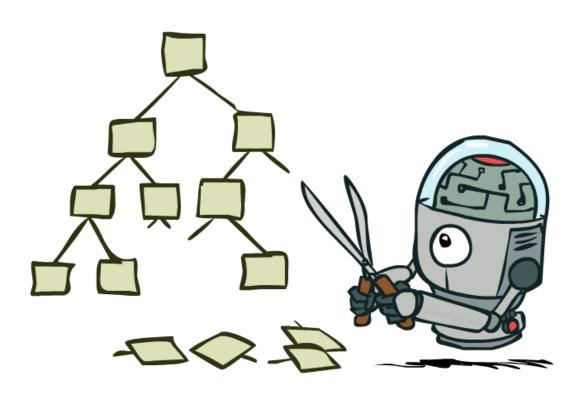
○ Space: O(bm)

○ Example: For chess, $b \approx 35$, $m \approx 100$

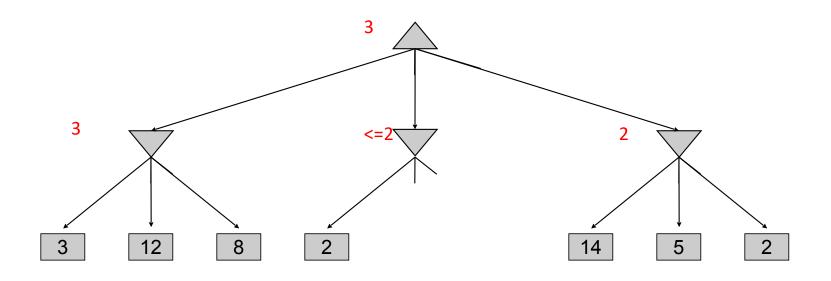
- Exact solution is completely infeasible
- But, do we need to explore the whole tree?



Game Tree Pruning



Minimax Example: Metareasoning



Alpha-Beta Implementation

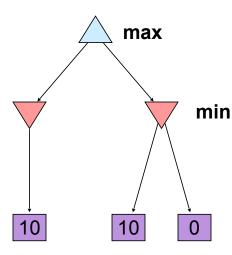
α: MAX's best option on path to rootβ: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

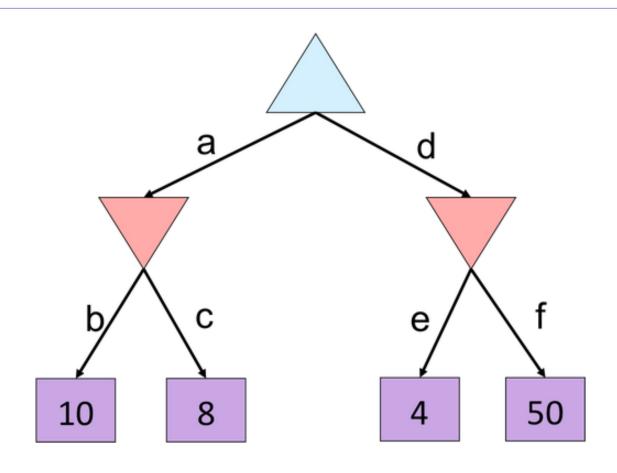
```
\begin{aligned} &\text{def min-value(state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, \text{value(successor, } \alpha, \beta)) \\ &\text{if } v \leq \alpha \text{ return } v \\ &\beta = \min(\beta, v) \\ &\text{return } v \end{aligned}
```

Alpha-Beta Pruning Properties

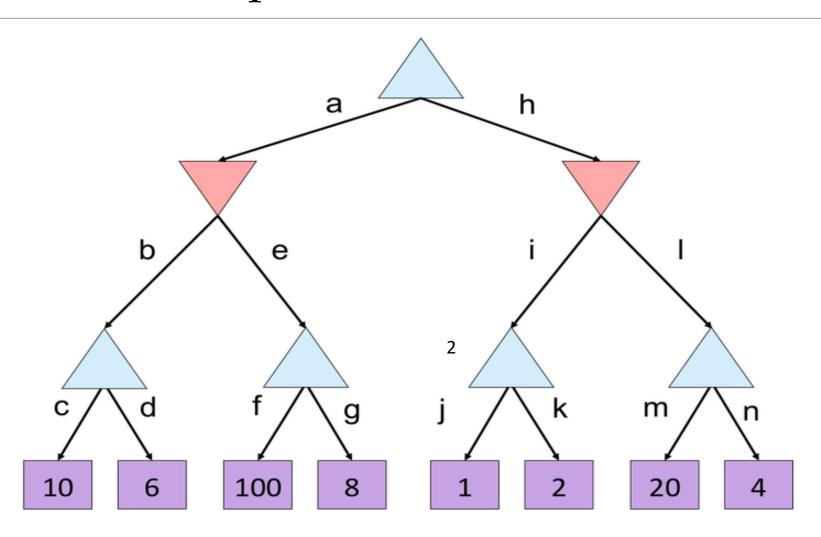
- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - \circ Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...



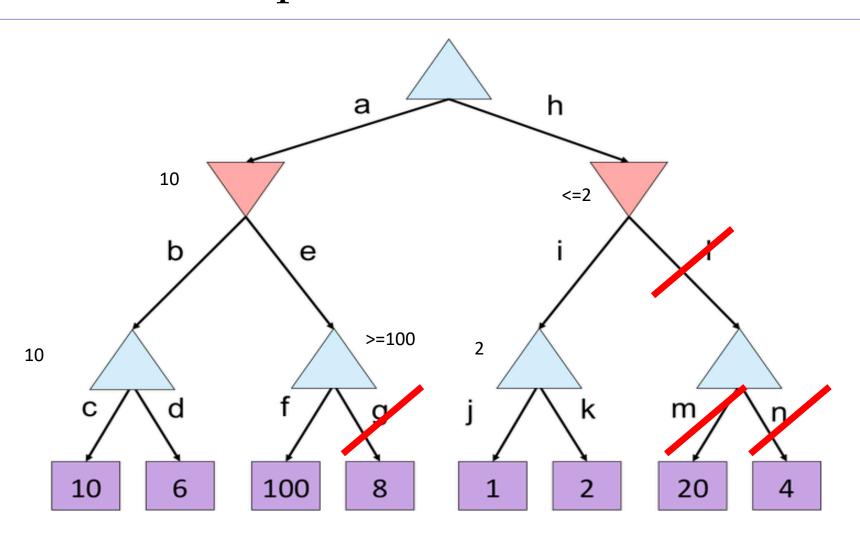
Alpha-Beta Quiz



Alpha-Beta Quiz 2



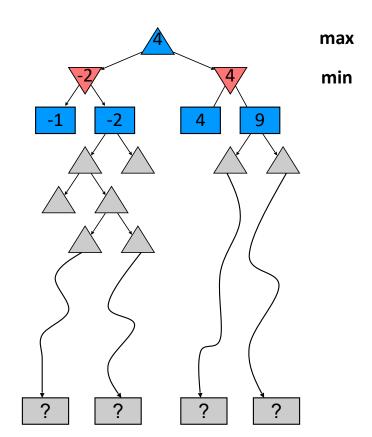
Alpha-Beta Quiz 2



Resource Limits

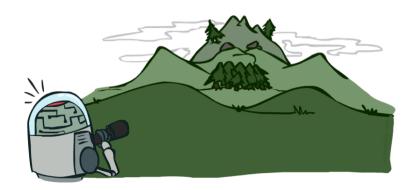
Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - o Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - o α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm



Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation



[Demo: depth limited (L6D4, L6D5)]

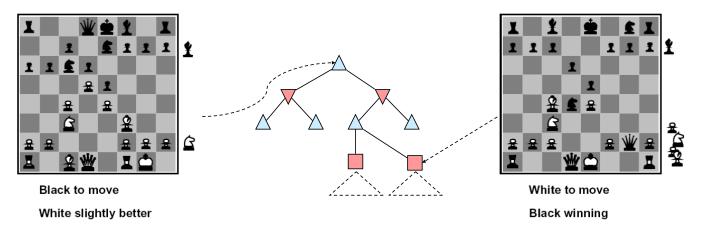
Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

• Evaluation functions score non-terminals in depth-limited search

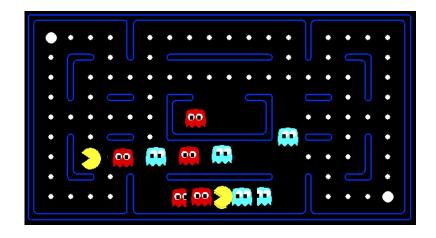


- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

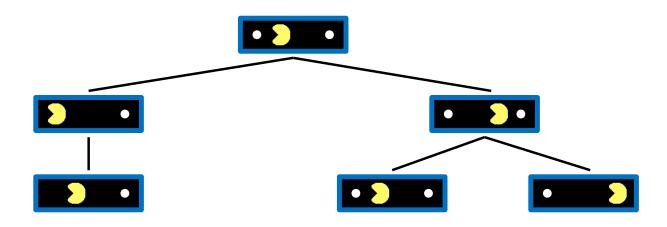
Evaluation for Pacman



[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts coordinate (L6D6,7,8,10)]

Video of Demo Thrashing (d=2)

Why Pacman Starves



A danger of replanning agents!

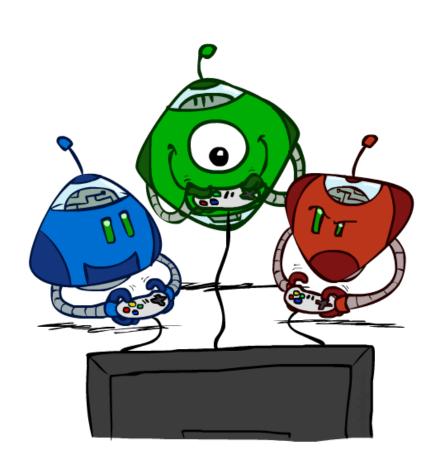
- He knows his score will go up by eating the dot now (west, east)
- He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Other Game Types



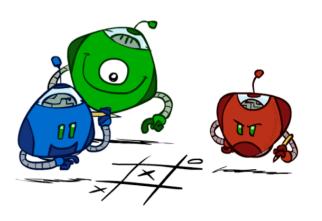
• What if the game is not zero-sum, or has multiple players?

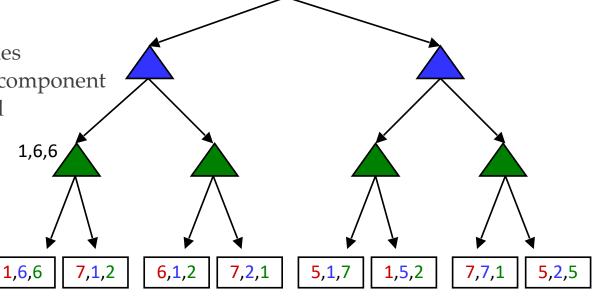
• Terminals have utility tuples

• Node values are also utility tuples

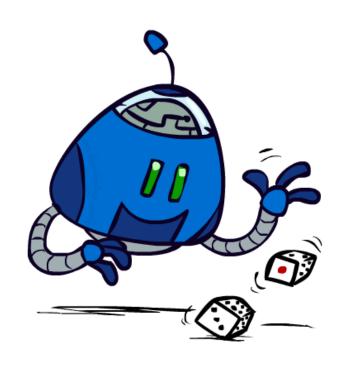
• Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...

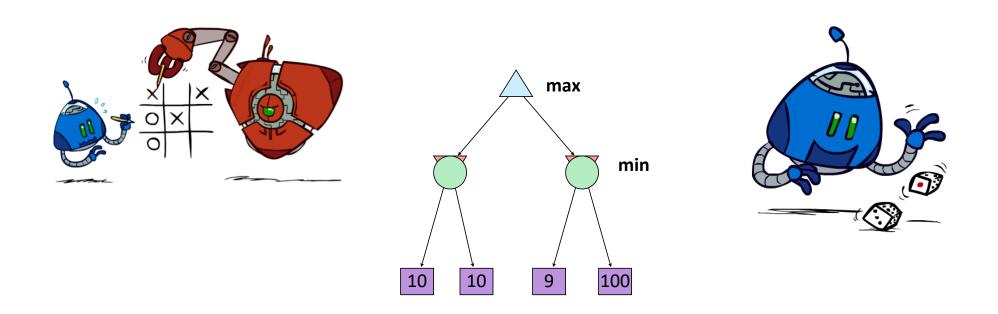




Uncertain Outcomes



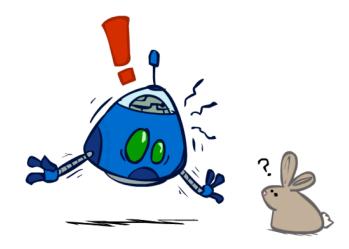
Worst-Case vs. Average Case



Idea: Uncertain outcomes controlled by chance, not an adversary!

Why not minimax?

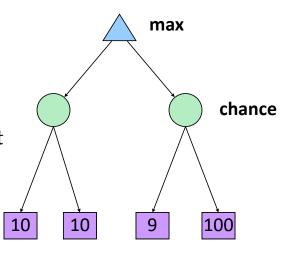
- Worst case reasoning is too conservative
- Need average case reasoning



Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Unpredictable humans: humans are not perfect
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal playMax nodes as in minimax search

 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes



Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

```
def value(state):
                   if the state is a terminal state: return the state's utility
                   if the next agent is MAX: return max-value(state)
                   if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                              def exp-value(state):
                                                                  initialize v = 0
    initialize v = -\infty
                                                                  for each successor of state:
   for each successor of state:
       v = max(v, value(successor))
                                                                     probability(successor)
    return v
                                                                      v += p * value(successor)
                                                                  return v
```

Expectimax Pseudocode

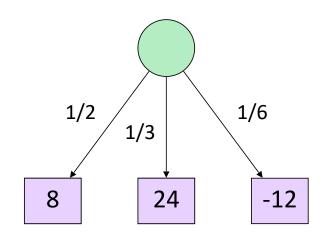
def exp-value(state):

initialize v = 0 for each successor of state:

p =
probability(successor)

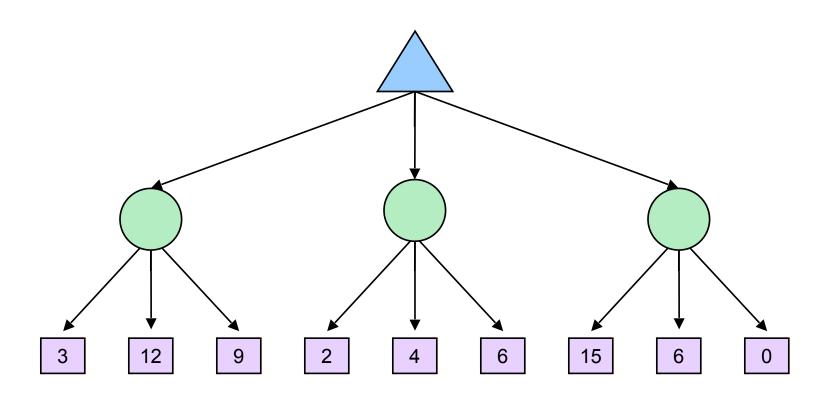
v += p * value(successor)

return v

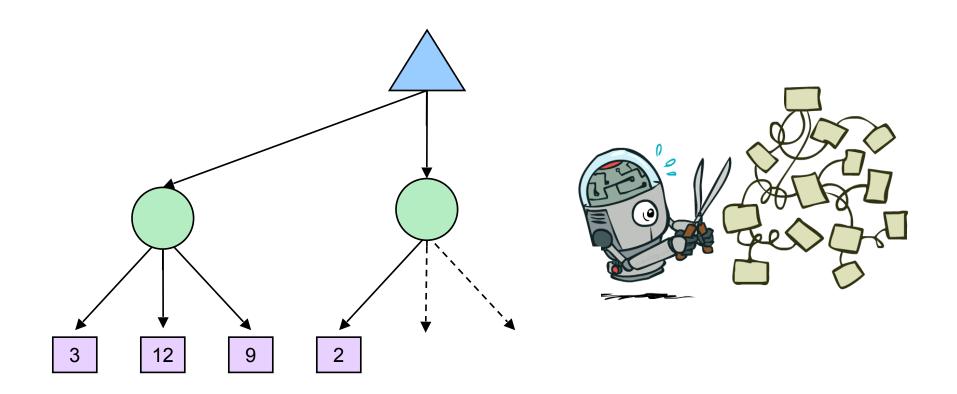


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

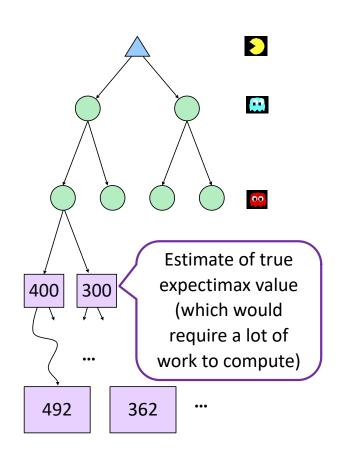
Expectimax Example



Expectimax Pruning?



Depth-Limited Expectimax

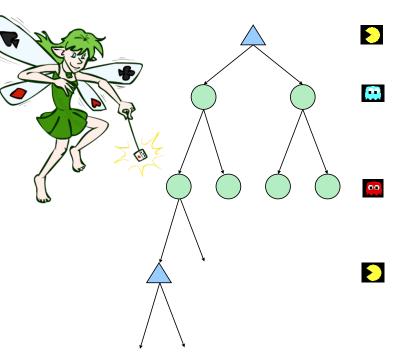


What Probabilities to Use?

 In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state

 Model could be a simple uniform distribution (roll a die)

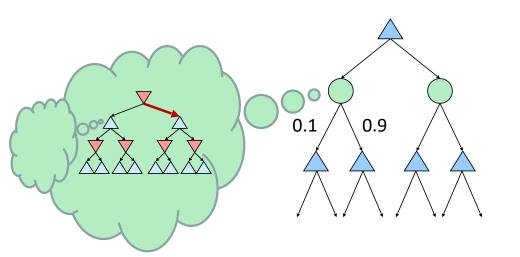
- Model could be sophisticated and require a great deal of computation
- We have a chance node for any outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

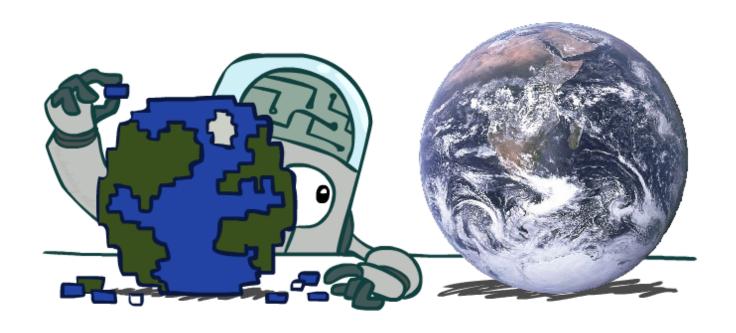


Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

This is basically how you would model a human, except for their utility: their utility might be the same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a slightly different utility (like another person navigating in the office)

Modeling Assumptions



The Dangers of Optimism and Pessimism

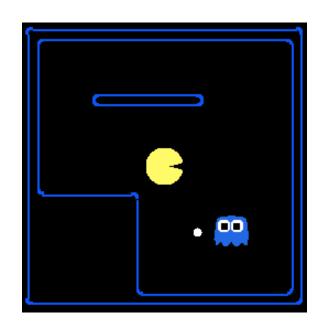
Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality



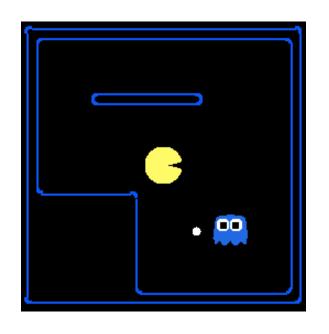
	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		,

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Assumptions vs. Reality



	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

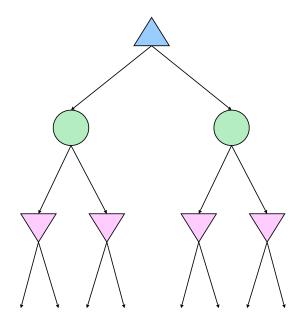
Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

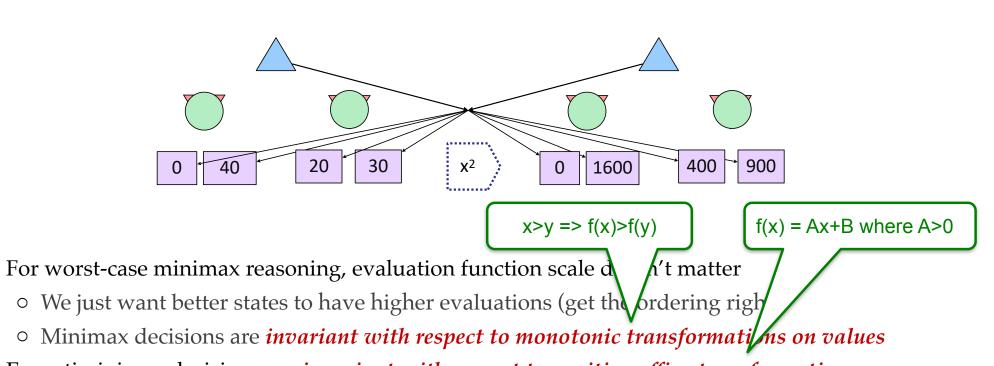




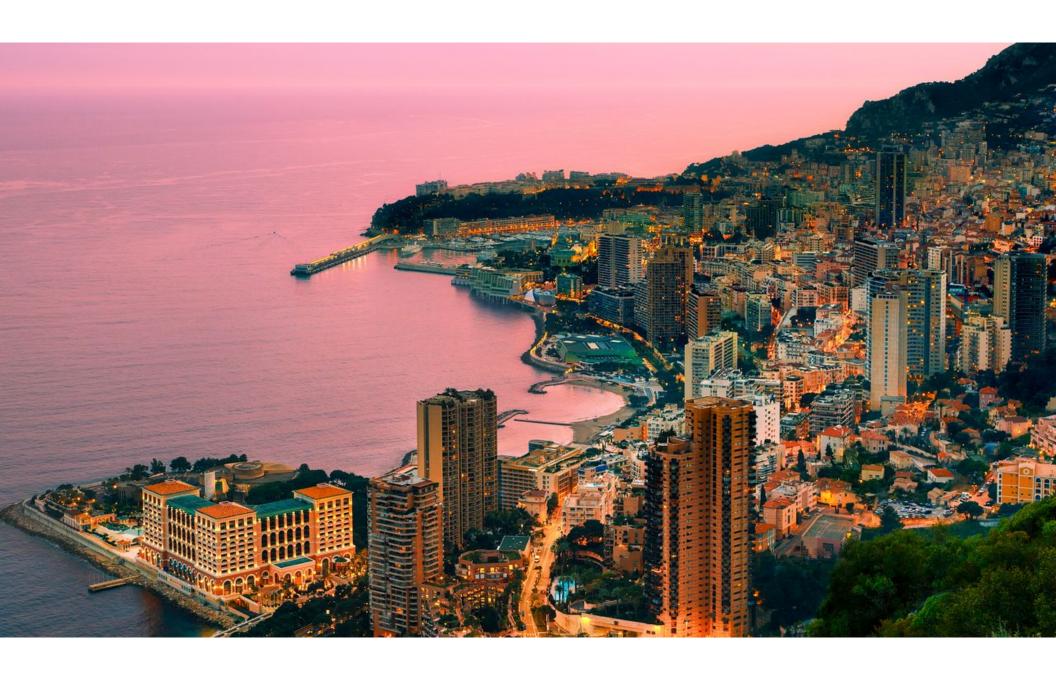
Example: Backgammon

- Dice rolls increase *b*: 21 possible rolls with 2 dice
 - o Backgammon ≈ 20 legal moves
 - Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

What Utility Values to Use?



- Expectiminimax decisions are *invariant with respect to positive affine transformations*
- Expectiminimax evaluation functions have to be aligned with actual win probabilities!



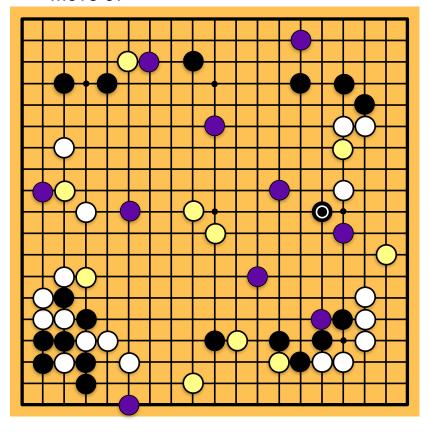
Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
 - \circ Pretty hopeless for Go, with b > 300
- MCTS combines two important ideas:
 - Evaluation by rollouts play multiple games to termination from a state s (using a simple, fast rollout policy) and count wins and losses
 - *Selective search* explore parts of the tree that will help improve the decision at the root, regardless of depth

Rollouts

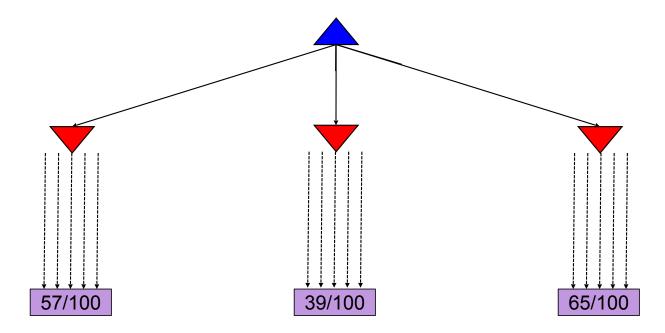
- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!
- Having a "better" rollout policy helps

"Move 37"



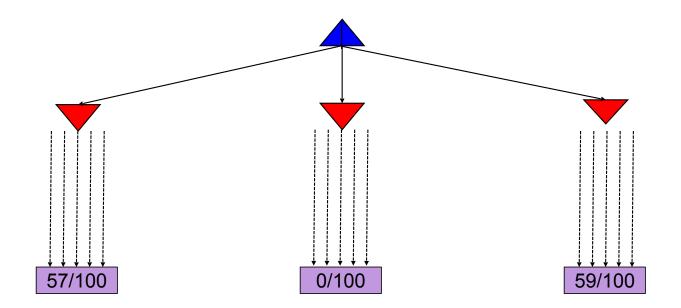
MCTS Version 0

- Do *N* rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric



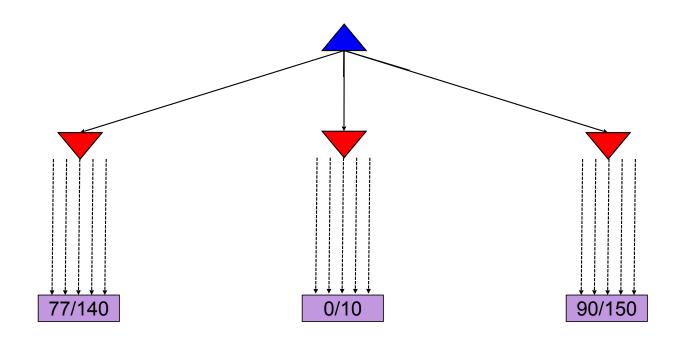
MCTS Simple Version

- Do *N* rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric



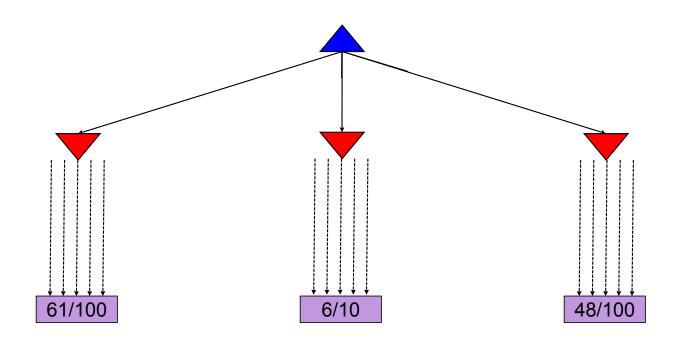
MCTS

Allocate rollouts to more promising nodes



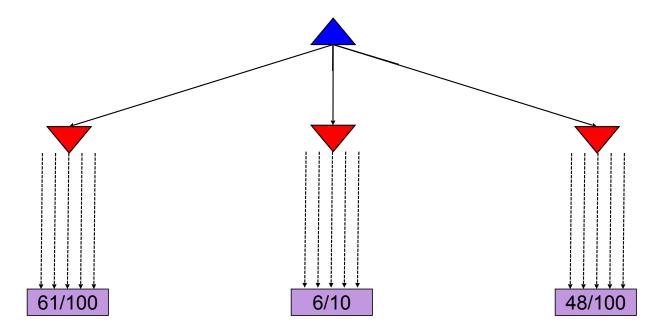
MCTS

Allocate rollouts to more promising nodes



MCTS Version 1

- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes



UCB heuristics

• UCB1 formula combines "promising" and "uncertain":

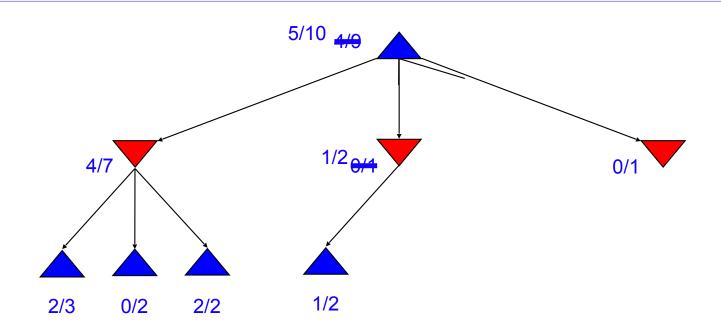
$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(PARENT(n))}{N(n)}}$$

- \circ N(n) = number of rollouts from node n
- \circ U(n) = total utility of rollouts (e.g., # wins) for Player(Parent(n))

MCTS Version 2: UCT

- Repeat until out of time:
 - Given the current search tree, recursively apply UCB to choose a path down to a leaf (not fully expanded) node n
 - Add a new child *c* to *n* and run a rollout from *c*
 - Update the win counts from *c* back up to the root
- Choose the action leading to the child with highest N

UCT Example



Why is there no min or max?????

- "Value" of a node, U(n)/N(n), is a weighted *sum* of child values!
- Idea: as $N \rightarrow \infty$, the vast majority of rollouts are concentrated in the best children, so weighted average \rightarrow max/min
- Theorem: as *N* → ∞ UCT selects the minimax move
 (but *N* never approaches infinity!)

Summary

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!
 - $\circ b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000, partially observable, often > 2 players