CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Saagar Sanghavi - UC Berkeley
[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, and many others]

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
- Speech recognition
- Robot localization
- User attention
- Medical monitoring
- Need to introduce time (or space) into our models

Markov Chains (Review from EE 16A, CS 70)

- Value of X at a given time is called the state

- Transition probabilities (dynamics): $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$ specify how the state evolves over time

Markovian Assumption

- Basic conditional independence:
- Given the present, the future is independent of the past!
- Each time step only depends on the previous
- This is called the (first order) Markov property

Example Markov Chain: Weather

- States: $\mathrm{X}=\{$ rain, sun $\}$
- Initial distribution:

$\mathbf{P}\left(\mathbf{X}_{0}\right)$	
sun	rain
1	0.0

- CPT P($\left.\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right)$:

Two new ways of representing the same CPT

$\mathbf{X}_{\mathbf{t}-1}$	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathbf{t}} \mid \mathbf{X}_{\mathbf{t - 1}}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Example Markov Chain: Weather

- Initial distribution: 1.0 sun

- What is the probability distribution after one step?

$$
\begin{aligned}
P\left(X_{2}=\text { sun }\right)= & \sum_{x_{1}} P\left(x_{1}, X_{2}=\text { sun }\right)=\sum_{x_{1}} P\left(X_{2}=\operatorname{sun} \mid x_{1}\right) P\left(x_{1}\right) \\
P\left(X_{2}=\text { sun }\right)= & P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\text { sun }\right)+ \\
& P\left(X_{2}=\operatorname{sun} \mid X_{1}=\text { rain }\right) P\left(X_{1}=\text { rain }\right) \\
& 0.9 \cdot 1.0+0.3 \cdot 0.0=0.9
\end{aligned}
$$

Mini-Forward Algorithm

- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t ?

$$
\begin{aligned}
P\left(x_{1}\right) & =\text { known } \\
P\left(x_{t}\right) & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}\right) \\
& =\sum_{x_{t-1}} P(x_{t} \underbrace{\left.x_{t-1}\right) P\left(x_{t-1}\right)}_{\text {Forward simulation }}
\end{aligned}
$$

Example Run of Mini-Forward Algorithm

- From initial observation of sun

- From initial observation of rain

- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:

$$
\left\langle\begin{array}{c}
p \\
1-p \\
\mathrm{P}\left(X_{1}\right)
\end{array}\right\rangle
$$

Stationary Distribution

- For most chains:
- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
- The distribution we end up with is ${ }_{\infty}$ called the stationary distribution of the chain
- It satisfies

$$
P_{\infty}(X)=P_{\infty+1}(X)=\sum_{x} P(X \mid x) P_{\infty}(x)
$$

Example: Stationary Distribution

- Question: What's $\mathrm{P}(\mathrm{X})$ at time $\mathrm{t}=$ infinity?

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =P(\text { sun } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { sun } \mid \text { rain }) P_{\infty}(\text { rain }) \\
P_{\infty}(\text { rain }) & =P(\text { rain } \mid \text { sun }) P_{\infty}(\text { sun })+P(\text { rain } \mid \text { rain }) P_{\infty}(\text { rain })
\end{aligned}
$$

$P_{\infty}($ sun $)=0.9 P_{\infty}($ sun $)+0.3 P_{\infty}($ rain $)$
$P_{\infty}($ rain $)=0.1 P_{\infty}($ sun $)+0.7 P_{\infty}($ rain $)$
$P_{\infty}($ sun $)=3 P_{\infty}($ rain $)$
$P_{\infty}($ rain $)=1 / 3 P_{\infty}($ sun $)$
Also: $P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$$
\begin{aligned}
P_{\infty}(\text { sun }) & =3 / 4 \\
P_{\infty}(\text { rain }) & =1 / 4
\end{aligned}
$$

$\mathbf{X}_{\mathrm{t}-1}$	$\mathbf{X}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states X_{i}
- You observe outputs (effects) at each time step

Example: Weather HMM

\circ An HMM is defined by:

- Initial distribution:

$$
\begin{aligned}
& P\left(X_{1}\right) \\
& P\left(X_{t} \mid X_{t-1}\right) \\
& P\left(E_{t} \mid X_{t}\right)
\end{aligned}
$$

- Transitions:
- Emissions:

R_{t-1}	R_{t}	$P\left(R_{t} \mid R_{t-1}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.3
$-r$	$-r$	0.7

R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Example: Ghostbusters HMM

- $\mathrm{P}\left(\mathrm{X}_{1}\right)=$ uniform
- $\mathrm{P}\left(\mathrm{X} \mid \mathrm{X}^{\prime}\right)=$ usually move clockwise, but sometimes move in a random direction or stay in place
- $\mathrm{P}\left(\mathrm{R}_{\mathrm{ij}} \mid \mathrm{X}\right)=$ same sensor model as before: red means close, green means far away.

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$P\left(\mathrm{X}_{1}\right)$		

$1 / 6$	$1 / 5$	$1 / 2$
0	$1 / 6$	0
0	0	0
$P\left(X \mid X^{\prime}=<1,2>\right)$		

Conditional Independence

- HMMs have two important independence properties:
- Markovian assumption of hidden process
- Current observation independent of all else given current state

- Does this mean that evidence variables are guaranteed to be independent?
- [No, they tend to correlated by the hidden state]

Ghostbusters Basic Dynamics

Ghostbusters - Circular Dynamics -- HMM

Ghostbusters Circular Dynamics

Ghostbusters Whirlpool Dynamics

Real HMM Examples

- Robot tracking:
- Observations are range readings (continuous)
- States are positions on a map (continuous)
- Speech recognition HMMs:
- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)
- Machine translation HMMs:
- Observations are words (tens of thousands)
- States are translation options

Filtering

- Filtering: Tracking the distribution $B_{t}(X)=P_{t}\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)$ (called the belief state) over time
- $\mathrm{B}_{1}(\mathrm{X})$ initial state, (usually uniform)
- As time passes, or we get observations, update $\mathrm{B}(\mathrm{X})$
- Discrete state-space (HMMs):
- Exact Inference: Forward Algorithm
- Approximate Inference: Particle Filtering
- Continuous state-space (dynamical systems):
- Exact Inference: Kalman Filtering (OOS, see EE 126 or EE 221A for details)

Example: Robot Localization

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

Example: Robot Localization

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

Example: Robot Localization

Prob

$t=2$

Example: Robot Localization

Prob

Example: Robot Localization

Prob

$t=4$

Example: Robot Localization

Prob

Inference: Find State Given Evidence

- We are given evidence at each time and want to know $P\left(X_{t} \mid e_{1: t}\right)$
- Idea: start with $P\left(X_{1}\right)$ and derive $P\left(X_{t} \mid e_{1: t}\right)$ in terms of $P\left(X_{t-1} \mid e_{1: t-1}\right)$
- Two steps: Passage of time + Incorporate Evidence

Inference: Base Cases

$P\left(X_{1} \mid e_{1}\right)$
$P\left(X_{1} \mid e_{1}\right)=\frac{P\left(X_{1}, e_{1}\right)}{\sum_{x_{1}} P\left(x_{1}, e_{1}\right)}$
$P\left(X_{1} \mid e_{1}\right)=\frac{P\left(e_{1} \mid X_{1}\right) P\left(X_{1}\right)}{\sum_{x_{1}} P\left(e_{1} \mid x_{1}\right) P\left(x_{1}\right)}$

$$
\begin{gathered}
P\left(X_{2}\right) \\
P\left(X_{2}\right)=\sum_{x_{1}} P\left(x_{1}, X_{2}\right) \\
P\left(X_{2}\right)=\sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1}\right)
\end{gathered}
$$

Passage of Time

- Assume we have current belief $\mathrm{P}(\mathrm{X}$ I evidence to date) $P\left(X_{t} \mid e_{1: t}\right)$

${ }^{\circ}$ Then, after one time step passes:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t}\right) & =\sum_{x_{t}} P\left(X_{t+1}, x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}, e_{1: t}\right) P\left(x_{t} \mid e_{1: t}\right) \\
& =\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs get "pushed" through the transitions

Observation

- Assume we have current belief $\mathrm{P}(\mathrm{X}$ I previous evidence):

$$
P\left(X_{t+1} \mid e_{1: t}\right)
$$

- Then, after evidence comes in:

$$
\begin{aligned}
P\left(X_{t+1} \mid e_{1: t+1}\right) & =P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) / P\left(e_{t+1} \mid e_{1: t}\right) \\
& \propto_{X_{t+1}} P\left(X_{t+1}, e_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid e_{1: t}, X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right) \\
& =P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)
\end{aligned}
$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Passage of Time

- As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Example: Observation

- As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

$$
B(X) \propto P(e \mid X) B^{\prime}(X)
$$

Example: $\mathrm{U}_{1}=+\mathbf{u}, \mathrm{U}_{2}=+\mathbf{u}$

Online Belief Updates

- Every time step, we start with current $\mathrm{P}(\mathrm{X} \mid$ evidence $)$
- We update for time:

$$
P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)
$$

- We update for evidence:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)
$$

- The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

- We can derive the following updates

$$
\begin{aligned}
P\left(x_{t} \mid e_{1: t}\right) & \propto{ }_{X} P\left(x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\
& =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
\end{aligned}
$$ want to have $P(x \mid e)$ at each time step, or just once at the end...

Video of Demo Pacman - Sonar (with beliefs)

Most Likely Explanation

HMMs: MLSE Queries

- HMMs defined by
- States X
- Observations E
- Initial distribution:
- Transitions:
- Emissions:
$P\left(X_{1}\right)$
$P\left(X \mid X_{-1}\right)$

- New query: most likely explanation:

$$
\arg \max _{x_{1: t}} P\left(x_{1: t} \mid e_{1: t}\right)
$$

- New method: the Viterbi algorithm

Most likely explanation = most probable path

- State trellis: graph of states and transitions over time

- Each arc represents some transition $X_{t-1} \rightarrow X_{t}$
- Each arc has weight $P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)\left(\right.$ arcs to initial states have weight $\left.P\left(x_{0}\right)\right)$
- The product of weights on a path is proportional to that state seq's probability
- Forward algorithm: sums of paths
- Viterbi algorithm: best paths
- Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum)
For each state at time t, keep track of the total probability of all paths to it

$$
\begin{aligned}
f_{t}\left[x_{t}\right] & =P\left(x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) f_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Viterbi Algorithm (Max)
For each state at time t, keep track of the maximum probability of any path to it

$$
\begin{aligned}
m_{t}\left[x_{t}\right] & =\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right) \\
& =P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]
\end{aligned}
$$

Viterbi algorithm

R_{t}	R_{t+1}	$P\left(R_{t+1} \mid R_{t}\right)$
$+r$	$+r$	0.7
$+r$	$-r$	0.3
$-r$	$+r$	0.1
$-r$	$-r$	0.9
R_{t}	U_{t}	$P\left(U_{t} \mid R_{t}\right)$
$+r$	$+u$	0.9
$+r$	$-u$	0.1
$-r$	$+u$	0.2
$-r$	$-u$	0.8

Time complexity?
$\mathrm{O}\left(|\mathrm{X}|{ }^{2} \mathrm{~T}\right)$

Space complexity?
O(|X|T)

Number of paths?
$\mathrm{O}(|\mathrm{X}| \mathrm{T})$

Viterbi in negative log space

argmax of product of probabilities

$\mathbf{W}_{\mathbf{t}-1}$	$\mathbf{P}\left(\mathbf{W}_{\mathrm{t}} \mid \mathbf{W}_{\mathrm{t}-1}\right)$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

$\mathbf{W}_{\mathbf{t}}$	$\mathbf{P}\left(\mathbf{U}_{\mathbf{t}} \mid \mathbf{W}_{\mathbf{t}}\right)$	
	true	false
sun	0.2	0.8
rain	0.9	0.1

$=$ argmin of sum of negative log probabilities
$=$ minimum-cost path
Viterbi is essentially uniform cost graph search

Viterbi Algorithm Pseudocode

```
function \(\operatorname{VITERBI}(O, S, \Pi, Y, A, B): X\)
    for each state \(i=1,2, \ldots, K\) do
        \(T_{1}[i, 1] \leftarrow \pi_{i} \cdot B_{i y_{1}}\)
        \(T_{2}[i, 1] \leftarrow 0\)
    end for
    for each observation \(j=2,3, \ldots, T\) do
        for each state \(i=1,2, \ldots, K\) do
        \(T_{1}[i, j] \leftarrow \max _{k}\left(T_{1}[k, j-1] \cdot A_{k i} \cdot B_{i y_{j}}\right)\)
        \(T_{2}[i, j] \leftarrow \arg \max _{k}\left(T_{1}[k, j-1] \cdot A_{k i} \cdot B_{i y_{j}}\right)\)
        end for
    end for
    \(z_{T} \leftarrow \arg \max _{k}\left(T_{1}[k, T]\right)\)
    \(x_{T} \leftarrow s_{z_{T}}\)
    for \(j=T, T-1, \ldots, 2\) do
        \(z_{j-1} \leftarrow T_{2}\left[z_{j}, j\right]\)
        \(x_{j-1} \leftarrow s_{z_{j-1}}\)
    end for
    return \(X\)
end function
```

Observation Space $O=\left\{o_{1}, o_{2}, \ldots, o_{N}\right\}$
State Space $\quad S=\left\{s_{1}, s_{2}, \ldots, s_{K}\right\}$
Initial probabilities
Observations
$\Pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{K}\right)$
$Y=\left(y_{1}, y_{2}, \ldots, y_{T}\right)$
Transition Matrix $\quad A \in \mathbb{R} K \times K$
Emission Matrix $\quad B \in \mathbb{R}^{K} \times N$

Matrix $\mathrm{T}_{1}[\mathrm{i}, \mathrm{j}]$ stores probabilities of most likely path so far with $x_{j}=s_{i}$

Matrix $\mathrm{T}_{2}[\mathrm{i}, \mathrm{j}]$ stores $x_{\mathrm{j}-1}$ of most likely path so far with $x_{i}=s_{\text {i }}$

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes $|\mathrm{X}|$ is too big to use exact inference
- $|X|$ may be too big to even store $P\left(X \mid e_{1: T}\right)$
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice

Representation: Particles

- Our representation of $\mathrm{P}(\mathrm{X})$ is now a list of N particles (samples)
- Generally, N << |X|

- $P(x)$ approximated by number of particles with value x
- So, many x may have $P(x)=0$!
- More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - sample's frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Incorporate Observation

- Slightly trickier:
- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $P(e)$)
Particles:
$(3,2)$
$(2,3)$
$(3,2)$
$(3,1)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(2,2)$

Particles:

$(3,2) w=.9$
$(2,3) w=.2$
$(3,2) w=.9$
$(3,1) w=.4$
$(3,3) w=.4$
$(3,2) w=.9$
$(1,3) w=.1$
$(2,3) w=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) w=.4$

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
Particles:
$(3,2) \mathrm{w}=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) \mathrm{w}=.4$

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Video of Demo - Moderate Number of Particles

Video of Demo - One Particle

Video of Demo - Huge Number of Particles

Robot Localization

- In robot localization:
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store $B(X)$
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

Global localization with sonar sensors

Particle Filter Localization (Laser)

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $\mathrm{P}\left(\mathrm{X}_{\mathrm{T}} \mid \mathrm{e}_{1: \mathrm{T}}\right)$ is computed

- Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $t=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathrm{G}_{1}{ }^{\mathrm{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{2}{ }^{\mathbf{a}}=(2,3) \mathrm{G}_{2}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $\mathrm{P}\left(\mathrm{E}_{1}{ }^{\mathrm{a}} \mid \mathrm{G}_{1}{ }^{\mathrm{a}}\right) * \mathrm{P}\left(\mathrm{E}_{1}{ }^{\mathrm{b}} \mid \mathrm{G}_{1}{ }^{\mathrm{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

