CS 188: Artificial Intelligence

Hidden Markov Models

Instructor: Saagar Sanghavi — UC Berkeley

[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, and many others]

Reasoning over Time or Space

- Often, we want to reason about a sequence of observations
 - Speech recognition
 - Robot localization
 - User attention
 - Medical monitoring
- Need to introduce time (or space) into our models

Markov Chains (Review from EE 16A, CS 70)

• Value of X at a given time is called the **state**

o Transition probabilities (dynamics): $P(X_t \mid X_{t-1})$ specify how the state evolves over time

Markovian Assumption

• Basic conditional independence:

- Given the present, the future is independent of the past!
- Each time step only depends on the previous
- This is called the (first order) Markov property

Example Markov Chain: Weather

 \circ States: $X = \{rain, sun\}$

Initial distribution:

P(X ₀)		
sun	rain	
1	0.0	

 \blacksquare CPT P(X_t | X_{t-1}):

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Two new ways of representing the same CPT

Example Markov Chain: Weather

Initial distribution: 1.0 sun

• What is the probability distribution after one step?

$$P(X_2 = sun) = \sum_{x_1} P(x_1, X_2 = sun) = \sum_{x_1} P(X_2 = sun | x_1) P(x_1)$$

$$P(X_2 = \text{sun}) = P(X_2 = \text{sun}|X_1 = \text{sun})P(X_1 = \text{sun}) + P(X_2 = \text{sun}|X_1 = \text{rain})P(X_1 = \text{rain})$$

 $0.9 \cdot 1.0 + 0.3 \cdot 0.0 = 0.9$

Mini-Forward Algorithm

• Question: What's P(X) on some day t?

$$P(x_1) = known$$

$$P(x_t) = \sum_{x_{t-1}} P(x_{t-1}, x_t)$$

$$= \sum_{x_{t-1}} P(x_t \mid x_{t-1}) P(x_{t-1})$$
Forward simulation

Example Run of Mini-Forward Algorithm

From initial observation of sun

From initial observation of rain

• From yet another initial distribution $P(X_1)$:

$$\left\langle \begin{array}{c} p \\ 1-p \\ P(X_1) \end{array} \right\rangle \qquad \cdots \qquad \left\langle \begin{array}{c} 0.75 \\ 0.25 \\ P(X_{\infty}) \end{array} \right\rangle$$

Stationary Distribution

• For most chains:

- Influence of the initial distribution gets less and less over time.
- The distribution we end up in is independent of the initial distribution
- Stationary distribution:
 - The distribution we end up with is called the stationary distribution of the chain

■ It satisfies
$$P_{\infty}(X) = P_{\infty+1}(X) = \sum_{x} P(X|x)P_{\infty}(x)$$

Example: Stationary Distribution

 \circ Question: What's P(X) at time t = infinity?

$$P_{\infty}(sun) = P(sun|sun)P_{\infty}(sun) + P(sun|rain)P_{\infty}(rain)$$

$$P_{\infty}(rain) = P(rain|sun)P_{\infty}(sun) + P(rain|rain)P_{\infty}(rain)$$

$$P_{\infty}(sun) = 0.9P_{\infty}(sun) + 0.3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 0.1P_{\infty}(sun) + 0.7P_{\infty}(rain)$$

$$P_{\infty}(sun) = 3P_{\infty}(rain)$$

$$P_{\infty}(rain) = 1/3P_{\infty}(sun)$$

$$P_{\infty}(sun) = 3/4$$
$$P_{\infty}(rain) = 1/4$$

$$P_{\infty}(rain) = 1/4$$

X _{t-1}	X _t	$P(X_{t} X_{t-1})$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Hidden Markov Models

Hidden Markov Models

- Markov chains not so useful for most agents
 - Need observations to update your beliefs
- Hidden Markov models (HMMs)
 - o Underlying Markov chain over states X_i
 - You observe outputs (effects) at each time step

Example: Weather HMM

• An HMM is defined by:

 \circ Initial distribution: $P(X_1)$

 \circ Transitions: $P(X_t \mid X_{t-1})$

 \circ Emissions: $P(E_t \mid X_t)$

R_{t-1}	R_{t}	$P(R_t R_{t-1})$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R _t	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Example: Ghostbusters HMM

- $P(X_1) = uniform$
- $P(X \mid X')$ = usually move clockwise, but sometimes move in a random direction or stay in place
- o $P(R_{ij} | X) = \text{same sensor model as before:}$ red means close, green means far away.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

1/6	16	1/2
0	1/6	0
0	0	0

P(X | X' = <1,2>)

Conditional Independence

- HMMs have two important independence properties:
 - Markovian assumption of hidden process
 - Current observation independent of all else given current state

- Does this mean that evidence variables are guaranteed to be independent?
 - [No, they tend to correlated by the hidden state]

Ghostbusters Basic Dynamics

Ghostbusters – Circular Dynamics -- HMM

Ghostbusters Circular Dynamics

Ghostbusters Whirlpool Dynamics

Real HMM Examples

• Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

- Observations are words (tens of thousands)
- States are translation options

Filtering

- Filtering: Tracking the distribution $B_t(X) = P_t(X_t \mid e_1, ..., e_t)$ (called the belief state) over time
 - o $B_1(X)$ initial state, (usually uniform)
 - \circ As time passes, or we get observations, update B(X)
- Discrete state-space (HMMs):
 - Exact Inference: Forward Algorithm
 - Approximate Inference: Particle Filtering
- Continuous state-space (dynamical systems):
 - Exact Inference: Kalman Filtering (OOS, see EE 126 or EE 221A for details)

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

Lighter grey: was possible to get the reading, but less likely b/c required 1 mistake

t=5

Inference: Find State Given Evidence

- \circ We are given evidence at each time and want to know $\ P(X_t|e_{1:t})$
- Idea: start with $P(X_1)$ and derive $P(X_t \mid e_{1:t})$ in terms of $P(X_{t-1} \mid e_{1:t-1})$
- Two steps: Passage of time + Incorporate Evidence $P(X_{t+1} \mid e_{1:t})$

Inference: Base Cases

$$P(X_1|e_1)$$

$$P(X_1|e_1) = \frac{P(X_1, e_1)}{\sum_{x_1} P(x_1, e_1)}$$

$$P(X_1|e_1) = \frac{P(e_1|X_1)P(X_1)}{\sum_{x_1} P(e_1|x_1)P(x_1)}$$

$$P(X_2)$$

$$P(X_2) = \sum_{x_1} P(x_1, X_2)$$

$$P(X_2) = \sum_{x_1} P(X_2|x_1) P(x_1)$$

Passage of Time

Assume we have current belief P(X | evidence to date)

$$P(X_t|e_{1:t})$$

Then, after one time step passes:
$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}, x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t, e_{1:t}) P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

Basic idea: beliefs get "pushed" through the transitions

Observation

 \circ Assume we have current belief $P(X \mid previous evidence)$:

$$P(X_{t+1}|e_{1:t})$$

Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Passage of Time

As time passes, uncertainty "accumulates"

(Transition model: ghosts usually go clockwise)

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

Before observation

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: $U_1 = +u$, $U_2 = +u$

R_{t}	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.3
-r	-r	0.7

R_{t}	U_t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Online Belief Updates

- \circ Every time step, we start with current P(X | evidence)
- We update for time:

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

• The forward algorithm does both at once (and doesn't normalize)

The Forward Algorithm

• We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

• We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Video of Demo Pacman – Sonar (with beliefs)

Most Likely Explanation

HMMs: MLSE Queries

- HMMs defined by
 - States X
 - Observations E
 - Initial distribution:
 - Transitions:
 - P(E|X)• Emissions:

• New query: most likely explanation:

 $P(X_1)$

 $\arg\max P(x_{1:t}|e_{1:t})$ $x_{1:t}$

New method: the Viterbi algorithm

Most likely explanation = most probable path

State trellis: graph of states and transitions over time

- Each arc represents some transition $X_{t-1} \rightarrow X_t$
- Each arc has weight $P(x_t \mid x_{t-1}) P(e_t \mid x_t)$ (arcs to initial states have weight $P(x_0)$)
- The **product** of weights on a path is proportional to that state seq's probability
- Forward algorithm: sums of paths
- **Viterbi algorithm:** best paths
 - Dynamic Programming: solve subproblems, combine them as you go along

Forward / Viterbi Algorithms

Forward Algorithm (Sum)

For each state at time *t*, keep track of the *total probability of all paths* to it

$$f_t[x_t] = P(x_t, e_{1:t})$$

$$= P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) f_{t-1}[x_{t-1}]$$

Viterbi Algorithm (Max)

For each state at time *t*, keep track of the *maximum probability of any path* to it

$$m_{t}[x_{t}] = \max_{x_{1:t-1}} P(x_{1:t-1}, x_{t}, e_{1:t})$$

$$= P(e_{t}|x_{t}) \max_{x_{t-1}} P(x_{t}|x_{t-1}) m_{t-1}[x_{t-1}]$$

Viterbi algorithm

R _t	R _{t+1}	$P(R_{t+1} R_t)$
+r	+r	0.7
+r	-r	0.3
-r	+r	0.1
-r	-r	0.9

R_{t}	U _t	$P(U_t R_t)$
+r	+u	0.9
+r	-u	0.1
-r	+u	0.2
-r	-u	0.8

Time complexity?
O(|X|²T)

Space complexity?

O(|X|T)

Number of paths? $O(|X|^T)$

Viterbi in negative log space

W _{t-1}	$P(W_{t} W_{t-1})$	
	sun	rain
sun	0.9	0.1
rain	0.3	0.7

\mathbf{W}_{t}	P(U _t W _t)	
	true	false
sun	0.2	0.8
rain	0.9	0.1

argmax of product of probabilities

- = argmin of sum of negative log probabilities
- = minimum-cost path

Viterbi is essentially uniform cost graph search

Viterbi Algorithm Pseudocode

```
function VITERBI(O, S, \Pi, Y, A, B) : X
       for each state i = 1, 2, \dots, K do
              T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}
              T_2[i,1] \leftarrow 0
       end for
       for each observation j=2,3,\ldots,T do
              for each state i = 1, 2, \dots, K do
                     T_1[i,j] \leftarrow \max_{k} \left(T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j} 
ight)
                     T_2[i,j] \leftarrow rg \max_{l} \left( T_1[k,j-1] \cdot A_{ki} \cdot B_{iy_j} 
ight)
              end for
       end for
       z_T \leftarrow rg \max_{k} \left( T_1[k,T] 
ight)
       x_T \leftarrow s_{z_T}
       for j=T,T-1,\ldots,2 do
              z_{i-1} \leftarrow T_2[z_i,j]
              x_{j-1} \leftarrow s_{z_{i-1}}
       end for
       return X
end function
```

```
Observation Space O = \{o_1, o_2, \dots, o_N\}

State Space S = \{s_1, s_2, \dots, s_K\}

Initial probabilities \Pi = (\pi_1, \pi_2, \dots, \pi_K)

Observations Y = (y_1, y_2, \dots, y_T)

Transition Matrix A \in \mathbb{R}^{K \times K}

Emission Matrix B \in \mathbb{R}^{K \times N}
```

Matrix $T_1[i, j]$ stores probabilities of most likely path so far with $x_j = s_i$

Matrix $T_2[i, j]$ stores x_{j-1} of most likely path so far with $x_i = s_i$

Particle Filtering

Particle Filtering

- Filtering: approximate solution
- Sometimes | X | is too big to use exact inference
 - |X| may be too big to even store $P(X \mid e_{1:T})$
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - \circ Generally, N << |X|

- \circ P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(2.2)

(2,3) (3,3) (3,2) (3,3) (3,2) (1,2) (3,3) (3,3) (2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x))$$

- This is like prior sampling sample's frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particle Filtering: Incorporate Observation

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

(2,3) w=.2 (3,2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3,2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3,1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1 (2,3) w=.2
- (3,2) w=.9
- (2,2) w=.4
- (New) Particles:
- (3,2)
- (2,2)
- (3,2)
- (2,3) (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Recap: Particle Filtering

• Particles: track samples of states rather than an explicit distribution

Video of Demo – Moderate Number of Particles

Video of Demo – One Particle

Video of Demo – Huge Number of Particles

Robot Localization

• In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Particle Filter Localization (Sonar)

[Dieter Fox, et al.] [Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Dieter Fox, et al.] [Video: global-floor.gif]

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

o Dynamic Bayes nets are a generalization of HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- $\circ~$ Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T \,|\, e_{1:T})$ is computed

• Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - o Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- **Elapse time**: Sample a successor for each particle
 - o Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- **Observe**: Weight each *entire* sample by the likelihood of the evidence conditioned on the sample
 - o Likelihood: $P(E_1^a \mid G_1^a) * P(E_1^b \mid G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood