
CS 188: Artificial Intelligence 

Hidden Markov Models

Instructor: Saagar Sanghavi — UC Berkeley
[Slides Credit: Dan Klein, Pieter Abbeel, Anca Dragan, Stuart Russell, and many others]



Reasoning over Time or Space

o Often, we want to reason about a sequence of observations
o Speech recognition

o Robot localization

o User attention

o Medical monitoring

o Need to introduce time (or space) into our models



Markov Chains (Review from EE 16A, CS 70)
o Value of X at a given time is called the state

o Transition probabilities (dynamics): P(Xt | Xt–1) specify how the state evolves 
over time 

X2X1 X3 X4



Markovian Assumption

o Basic conditional independence:
o Given the present, the future is independent of the past! 
o Each time step only depends on the previous
o This is called the (first order) Markov property



Example Markov Chain: Weather

o States: X = {rain, sun}
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Two new ways of representing the same CPT

sun
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Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 

▪ CPT P(Xt | Xt-1): 

P(X0)
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1 0.0



Example Markov Chain: Weather

o Initial distribution: 1.0 sun

o What is the probability distribution after one step?
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Mini-Forward Algorithm

o Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X2) P(X3) P(X∞)P(X4)

P(X1) P(X∞)
…



▪ Stationary distribution: 
▪ The distribution we end up with is 

called the stationary distribution           
of the chain 

▪ It satisfies 

Stationary Distribution

o For most chains:
o Influence of the initial distribution 

gets less and less over time.
o The distribution we end up in is 

independent of the initial distribution



Example: Stationary Distribution

o Question: What’s P(X) at time t = infinity?
X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9
sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Hidden Markov Models



Hidden Markov Models

o Markov chains not so useful for most agents
o Need observations to update your beliefs

o Hidden Markov models (HMMs)
o Underlying Markov chain over states Xi

o You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbt-1

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbt Umbt+1

Raint-1 Raint Raint+1

o An HMM is defined by:
o Initial distribution:
o Transitions:
o Emissions:



Example: Ghostbusters HMM

o P(X1) = uniform

o P(X|X’) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place

o P(Rij|X) = same sensor model as before: 
red means close, green means far away.
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P(X|X’=<1,2>)
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0
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Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j



Conditional Independence
o HMMs have two important independence properties:

o Markovian assumption of hidden process

o Current observation independent of all else given current state

o Does this mean that evidence variables are guaranteed to be independent?

o [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Ghostbusters Basic Dynamics



Ghostbusters – Circular Dynamics -- HMM



Ghostbusters Circular Dynamics



Ghostbusters Whirlpool Dynamics



Real HMM Examples

o Robot tracking:
o Observations are range readings (continuous)
o States are positions on a map (continuous)

o Speech recognition HMMs:
o Observations are acoustic signals (continuous valued)
o States are specific positions in specific words (so, tens of thousands)

o Machine translation HMMs:
o Observations are words (tens of thousands)
o States are translation options



Filtering

o Filtering: Tracking the distribution Bt(X) = Pt(Xt | e1, …, et) (called 
the belief state) over time
o B1(X) initial state, (usually uniform)
o As time passes, or we get observations, update B(X)

o Discrete state-space (HMMs): 
o Exact Inference: Forward Algorithm 
o Approximate Inference: Particle Filtering

o Continuous state-space (dynamical systems):
o Exact Inference: Kalman Filtering (OOS, see EE 126 or EE 221A for details)



Example: Robot Localization

t=0 
Sensor model: can read in which directions there is a wall, never more than 1 

mistake 
Motion model: may not execute action with small prob.

10Prob



Example: Robot Localization

t=1 
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Find State Given Evidence

o We are given evidence at each time and want to know
o Idea: start with P(X1) and derive P(Xt | e1:t)  in terms of P(Xt-1 | e1:t–1)
o Two steps: Passage of time + Incorporate Evidence

X2

E1

X1 X3 X4

E2 E3 E4

P(Xt+1 | e1:t)
P(Xt+1 | e1:t+1)P(Xt | e1:t)



Inference: Base Cases

E1

X1

X2X1



Passage of Time
o Assume we have current belief P(X | evidence to date)

o Then, after one time step passes:

o Basic idea: beliefs get “pushed” through the transitions

X2X1



Observation
o Assume we have current belief P(X | previous evidence):

o Then, after evidence comes in:
E1

X1

▪ Basic idea: beliefs “reweighted” by likelihood of evidence 
▪ Unlike passage of time, we have to renormalize 



Example: Passage of Time
o As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Example: Observation

o As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Example: U1 = +u, U2 = +u

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8
U1 U2

R0 R1 R2

P(R0 = +r) = 0.5 
P(R0 = –r0) = 0.5

P(R1 = +r) = 0.5 
P(R1 = –r)  = 0.5

P(R1 = +r | +u1) = 0.818 
P(R1 = –r | +u1) = 0.182

P(R2 = +r | +u1) = 0.627 
P(R2 = –r | +u1) = 0.373

P(R2 = +r | +u1, +u2) = 0.883 
P(R2 = –r | +u1, +u2) = 0.117



Online Belief Updates
o Every time step, we start with current P(X | evidence)
o We update for time:

o We update for evidence:

o The forward algorithm does both at once (and doesn't normalize)

X2X1

X2

E2



The Forward Algorithm
o We are given evidence at each time and want to know

o We can derive the following updates We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…



Video of Demo Pacman – Sonar (with beliefs)



Most Likely Explanation



HMMs: MLSE Queries

o HMMs defined by
o States X
o Observations E
o Initial distribution:
o Transitions:
o Emissions:

o New query: most likely explanation:

o New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5



Most likely explanation = most probable path
o State trellis: graph of states and transitions over time

 

o Each arc represents some transition Xt–1 → Xt

o Each arc has weight P(xt | xt–1) P(et | xt) (arcs to initial states have weight P(x0) )

o The product of weights on a path is proportional to that state seq’s probability 
o Forward algorithm: sums of paths
o Viterbi algorithm: best paths

o Dynamic Programming: solve subproblems, combine them as you go along

argmaxx1:t 
P(x1:t | e1:t)

= argmaxx1:t 
P(x1:t , e1:t)

= argmaxx1:t 
 P(x1:t , e1:t) 

= argmaxx1:t
 P(x0) ∏t P(xt | xt-1) P(et | xt) 

sun

rain

sun

rain

sun

rain

sun

rain

  X0               X1                 …              XT



Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum)
For each state at time t, keep track of the 
total probability of all paths to it

Viterbi Algorithm (Max) 
For each state at time t, keep track of the 
maximum probability of any path to it



Viterbi algorithm

Time complexity?
O(|X|2 T)

  X0               X1               X2                  X3

sun

rain

sun

rain

sun

rain

sun

rain

                     U1 = +u      U2 = –u          U3 = +u

0.5

0.5

0.18

0.63

0.09

0.06

0.72

0.07

0.01

0.24

0.18

0.63

0.09

0.06

Space complexity?
O(|X|T)

0.5

0.5

0.09

0.315

0.076

0.022

0.0136080

0.0138495

Number of paths?
O(|X|T)

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7
+r -r 0.3

-r +r 0.1

-r -r 0.9

Rt Ut P(Ut|Rt)

+r +u 0.9
+r -u 0.1

-r +u 0.2

-r -u 0.8



Viterbi in negative log space

argmax of product of probabilities 
= argmin of sum of negative log probabilities 
= minimum-cost path

sun

rain

sun

rain

sun

rain

sun

rain

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

1.0

1.0

2.47

0.67

3.47

4.06

0.72

3.84

6.64

2.06

2.47

0.67

3.47

4.06
S

G

Viterbi is essentially uniform cost graph search



Viterbi Algorithm Pseudocode
Observation Space 
State Space
Initial probabilities  
Observations
Transition Matrix A ∈ ℝK x K

Emission Matrix B ∈ ℝK x N

Matrix T1[i, j] stores probabilities of 
most likely path so far with xj = si

Matrix T2[i, j] stores xj–1 of most 
likely path so far with xj = si



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store P(X | e1:T)

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice



Representation: Particles

o Our representation of P(X) is now a list of N particles 
(samples)
o Generally, N << |X|

o P(x) approximated by number of particles with value x
o So, many x may have P(x) = 0! 
o More particles, more accuracy

o For now, all particles have a weight of 1

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – sample’s frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some 
move in another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before 

and after (consistent)

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight 
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact 
they now sum to (N times) an approximation 
of P(e))

Particle Filtering: Incorporate Observation

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)



Particle Filtering: Resample

o Rather than tracking weighted samples, we 
resample

o N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

o This is equivalent to renormalizing the 
distribution

o Now the update is complete for this time step, 
continue with the next one

Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)



Recap: Particle Filtering
o Particles: track samples of states rather than an explicit distribution

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (1,2) 
    (3,3) 
    (3,3) 
    (2,3)

Elapse Weight Resample

Particles: 
    (3,2) 
    (2,3) 
    (3,2)    
    (3,1) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (2,2)

     Particles: 
    (3,2)  w=.9 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (3,1)  w=.4 
    (3,3)  w=.4 
    (3,2)  w=.9 
    (1,3)  w=.1 
    (2,3)  w=.2 
    (3,2)  w=.9 
    (2,2)  w=.4

(New) Particles: 
    (3,2) 
    (2,2) 
    (3,2)    
    (2,3) 
    (3,3) 
    (3,2) 
    (1,3) 
    (2,3) 
    (3,2) 
    (3,2)



Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



Robot Localization

o In robot localization:
o We know the map, but not the robot’s position
o Observations may be vectors of range finder readings
o State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
o Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi][Dieter Fox, et al.]



Particle Filter Localization (Laser)

[Video: global-floor.gif][Dieter Fox, et al.]



Robot Mapping
o SLAM: Simultaneous Localization And 

Mapping
o We do not know the map or our location
o State consists of position AND map!
o Main techniques: Kalman filtering (Gaussian 

HMMs) and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)
o We want to track multiple variables over time, using multiple 

sources of evidence

o Idea: Repeat a fixed Bayes net structure at each time

o Variables from time t can condition on those from t-1

o Dynamic Bayes nets are a generalization of HMMs

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

t =1 t =2

G3
a

E3a E3b

G3
b

t =3



Exact Inference in DBNs
o Variable elimination applies to dynamic Bayes nets

o Procedure: “unroll” the network for T time steps, then eliminate variables until P(XT|e1:T) is 
computed

o Online belief updates: Eliminate all variables from the previous time step; store factors for current 
time only

G1
a

E1a E1b

G1
b

G2
a

E2a E2b

G2
b

G3
a

E3a E3b

G3
b

t =1 t =2 t =3

G3
b



DBN Particle Filters
o A particle is a complete sample for a time step

o Initialize: Generate prior samples for the t=1 Bayes net
o Example particle: G1

a = (3,3) G1
b = (5,3) 

o Elapse time: Sample a successor for each particle 
o Example successor: G2

a = (2,3) G2
b = (6,3)

o Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
o Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

o Resample: Select prior samples (tuples of values) in proportion to their likelihood


